Beweise rechnerisch, dass h(x)=6x^2+3x nicht ursprungssymmetrisch ist.

Antwort

Um zu überprüfen, ob die Funktion \( h(x) = 6x^2 + 3x \) ursprungssymmetrisch ist, musst du die Bedingung für Ursprungssymmetrie testen. Eine Funktion ist ursprungssymmetrisch, wenn gilt: \[ h(-x) = -h(x) \] Zuerst berechnen wir \( h(-x) \): \[ h(-x) = 6(-x)^2 + 3(-x) = 6x^2 - 3x \] Nun berechnen wir \( -h(x) \): \[ -h(x) = - (6x^2 + 3x) = -6x^2 - 3x \] Jetzt vergleichen wir \( h(-x) \) und \( -h(x) \): \[ h(-x) = 6x^2 - 3x \] \[ -h(x) = -6x^2 - 3x \] Da \( h(-x) \) und \( -h(x) \) nicht gleich sind (insbesondere die Koeffizienten von \( x^2 \) sind unterschiedlich), ist die Funktion \( h(x) = 6x^2 + 3x \) nicht ursprungssymmetrisch.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]

Durch welche Operationen wird eine Funktion f(x) entlang der x-Achse gestaucht oder gestreckt?

Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]

Ist die Riemannsche Vermutung bewiesen?

Nein, die Riemannsche Vermutung ist bislang nicht bewiesen. Sie gehört zu den berühmtesten ungelösten Problemen der Mathematik. Die Vermutung wurde 1859 von Bernhard Riemann formuliert... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Beweis des Satzes von Vieta

Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wur... [mehr]

Einfacher Beweis des Satzes von Vieta.

Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wur... [mehr]

Wie lautet die Gleichung der Symmetriachse des Graphen von g?

Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Satz von Vieta: Verwendung, Voraussetzungen, Beweis, Herleitung und Beispiel.

Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Er ist besonders nützlich in der Algebra, um Informationen über dieur... [mehr]