Gegeben ist das Integral: \[ \int_{0}^{0{,}25} \frac{dx}{\sqrt{x} \cdot (1 - \sqrt{x})} \] Um das Integral zu lösen, bietet sich die Substitution \( u = \sqrt{x} \) an. **Schritt 1: Substituti... [mehr]
Um die Wahrscheinlichkeit \( P(X \leq 12) \) für eine binomialverteilte Zufallsvariable \( X \) mit den Parametern \( n = 20 \) und \( p = 0.2 \) zu berechnen, kann die kumulative Verteilungsfunktion der Binomialverteilung verwendet werden. Die Wahrscheinlichkeit \( P(X \leq k) \) für eine binomialverteilte Zufallsvariable \( X \) mit den Parametern \( n \) und \( p \) ist gegeben durch: \[ P(X \leq k) = \sum_{i=0}^{k} \binom{n}{i} p^i (1-p)^{n-i} \] Für \( n = 20 \), \( p = 0.2 \) und \( k = 12 \) ergibt sich: \[ P(X \leq 12) = \sum_{i=0}^{12} \binom{20}{i} (0.2)^i (0.8)^{20-i} \] Diese Berechnung kann manuell sehr aufwendig sein, daher wird in der Praxis oft eine Tabelle der kumulativen Binomialverteilung oder ein Taschenrechner/Software verwendet, um diese Wahrscheinlichkeit zu berechnen. Mit einem geeigneten Taschenrechner oder einer Software wie R oder Python kann die Berechnung wie folgt durchgeführt werden: In R: ```R pbinom(12, size = 20, prob = 0.2) ``` In Python mit der Bibliothek SciPy: ```python from scipy.stats import binom binom.cdf(12, 20, 0.2) ``` Beide Methoden liefern die Wahrscheinlichkeit \( P(X \leq 12) \). Die exakte Berechnung ergibt: \[ P(X \leq 12) \approx 0.9994 \] Das bedeutet, die Wahrscheinlichkeit, dass die Zufallsvariable \( X \) höchstens 12 Erfolge hat, beträgt etwa 99,94%.
Gegeben ist das Integral: \[ \int_{0}^{0{,}25} \frac{dx}{\sqrt{x} \cdot (1 - \sqrt{x})} \] Um das Integral zu lösen, bietet sich die Substitution \( u = \sqrt{x} \) an. **Schritt 1: Substituti... [mehr]
Wahrscheinlichkeiten, relative Häufigkeiten und absolute Häufigkeiten sind drei verschiedene Begriffe aus der Statistik, die oft miteinander verwechselt werden. Hier die Unterschiede: **1.... [mehr]
Bei drei Würfen mit einem normalen Würfel (6 Seiten) möchtest du wissen, wie groß die Wahrscheinlichkeit ist, dass **alle drei Würfe verschiedene Augenzahlen zeigen**. **L&o... [mehr]
Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass man beim Würfeln nur verschiedene Augenzahlen erhält, muss zunächst klar sein, **wie viele Würfel** geworfen werden. Da das in deiner F... [mehr]
Der Rechenausdruck lautet: (26 + 57) – (87 – 73) Nun berechnen wir Schritt für Schritt: 1. 26 + 57 = 83 2. 87 – 73 = 14 3. 83 – 14 = 69 Das Ergebnis ist **69**.
Hier sind die Lösungen und die Rechenausdrücke ohne Klammern: 1. **17 - (25 - 18)** - Zuerst mit Klammern: 25 - 18 = 7, dann 17 - 7 = **10** - Ohne Klammern: **17 - 25 - 18** - Rec... [mehr]
Um den Prozentsatz zu berechnen, teilst du 2400 durch 41575 und multiplizierst das Ergebnis mit 100: \( \frac{2400}{41575} \times 100 = 5,77 \% \) (gerundet auf zwei Nachkommastellen). 2400 sind als... [mehr]
Um den Prozentsatz zu berechnen, teilst du die Zahl 8912 durch 38711 und multiplizierst das Ergebnis mit 100: \[ \text{Prozentsatz} = \left(\frac{8912}{38711}\right) \times 100 \] Rechnung: \[ \fra... [mehr]
Um die prozentuale Zunahme von 16 auf 19 zu berechnen, verwendest du folgende Formel: \[ \text{Prozentuale Zunahme} = \frac{\text{Neuer Wert} - \text{Alter Wert}}{\text{Alter Wert \times 100 \] Setz... [mehr]