25% von 100 Pixeln sind 25 Pixel.
Um die Wahrscheinlichkeit \( P(X \leq 12) \) für eine binomialverteilte Zufallsvariable \( X \) mit den Parametern \( n = 20 \) und \( p = 0.2 \) zu berechnen, kann die kumulative Verteilungsfunktion der Binomialverteilung verwendet werden. Die Wahrscheinlichkeit \( P(X \leq k) \) für eine binomialverteilte Zufallsvariable \( X \) mit den Parametern \( n \) und \( p \) ist gegeben durch: \[ P(X \leq k) = \sum_{i=0}^{k} \binom{n}{i} p^i (1-p)^{n-i} \] Für \( n = 20 \), \( p = 0.2 \) und \( k = 12 \) ergibt sich: \[ P(X \leq 12) = \sum_{i=0}^{12} \binom{20}{i} (0.2)^i (0.8)^{20-i} \] Diese Berechnung kann manuell sehr aufwendig sein, daher wird in der Praxis oft eine Tabelle der kumulativen Binomialverteilung oder ein Taschenrechner/Software verwendet, um diese Wahrscheinlichkeit zu berechnen. Mit einem geeigneten Taschenrechner oder einer Software wie R oder Python kann die Berechnung wie folgt durchgeführt werden: In R: ```R pbinom(12, size = 20, prob = 0.2) ``` In Python mit der Bibliothek SciPy: ```python from scipy.stats import binom binom.cdf(12, 20, 0.2) ``` Beide Methoden liefern die Wahrscheinlichkeit \( P(X \leq 12) \). Die exakte Berechnung ergibt: \[ P(X \leq 12) \approx 0.9994 \] Das bedeutet, die Wahrscheinlichkeit, dass die Zufallsvariable \( X \) höchstens 12 Erfolge hat, beträgt etwa 99,94%.
25% von 100 Pixeln sind 25 Pixel.
Ein Algorithmus in der Mathematik ist eine eindeutige, schrittweise Vorgehensweise zur Lösung eines Problems. Er besteht aus einer endlichen Folge von Anweisungen, die nacheinander ausgeführ... [mehr]
Bitte stelle deine Frage klar und präzise, damit ich sie beantworten kann. Auf diese Art von Fragen wird nicht geet. Bitte eine klare und präzise Frage.
Um die Steigung aus Testdaten zu ermitteln, wird meist eine lineare Regression verwendet. Dabei wird eine Gerade der Form \( y = mx + b \) an die Datenpunkte angepasst. Die Steigung \( m \) gibt an, w... [mehr]
62,34 Prozent von 3175,87 sind 1.979,74. Berechnung: 3175,87 × 0,6234 = 1.979,74
Um den Prozentsatz von 12 im Verhältnis zu 38 zu berechnen, verwendest du folgende Formel: \( \text{Prozentsatz} = \frac{12}{38} \times 100 \) Das ergibt: \( \frac{12}{38} \times 100 \approx 3... [mehr]
Der Tangens eines Winkels ist definiert als das Verhältnis von Gegenkathete zu Ankathete in einem rechtwinkligen Dreieck. Gesucht ist also der Winkel \( x \), für den gilt: \[ \tan(x) = 2 \... [mehr]
Um ein gleichseitiges Dreieck zu berechnen, benötigst du in der Regel eine Seitenlänge (a). Da alle Seiten gleich lang sind und alle Winkel 60° betragen, lassen sich verschiedene Grö... [mehr]
Ja, ich kann Berechnungen durchführen. Bitte stelle eine konkrete Rechenaufgabe oder Frage, damit ich dir weiterhelfen kann.
Um Prozente zu berechnen, kannst du folgende Grundformeln nutzen: 1. **Prozentwert berechnen:** Prozentwert = Grundwert × Prozentsatz / 100 Beispiel: 20 % von 150 = 150 × 20 / 1... [mehr]