Der Ausdruck \((A^3 - B^3)(A^3 + B^3)\) kann mithilfe der Identität für die Differenz und die Summe von Kuben vereinfacht werden. Zuerst erkennen wir, dass: \[ A^3 - B^3 = (A - B)(A^2 + A... [mehr]
Um die quadratische Gleichung \(5x^2 - 10x + 5 = 0\) in zwei Klammern zu schreiben, kann man zunächst versuchen, sie zu faktorisieren. 1. **Gleichung vereinfachen**: \[5x^2 - 10x + 5 = 0\] Man kann die Gleichung durch 5 teilen: \[x^2 - 2x + 1 = 0\] 2. **Quadratische Gleichung faktorisieren**: \[x^2 - 2x + 1 = (x - 1)^2\] Die faktorisierte Form der Gleichung ist also: \[(x - 1)(x - 1) = 0\] Das bedeutet, dass die ursprüngliche Gleichung \(5x^2 - 10x + 5 = 0\) in zwei Klammern geschrieben werden kann als: \[5(x - 1)(x - 1) = 0\]
Der Ausdruck \((A^3 - B^3)(A^3 + B^3)\) kann mithilfe der Identität für die Differenz und die Summe von Kuben vereinfacht werden. Zuerst erkennen wir, dass: \[ A^3 - B^3 = (A - B)(A^2 + A... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wur... [mehr]