Die Fehlermeldung „auto.arima can only handle univariate time series“ in R bedeutet, dass die Funktion `auto.arima()` aus dem Paket **forecast** nur mit **eindimensionalen Zeitreihen** (al... [mehr]
Um in R aus 10 Variablen eine Subskala mit nur 5 Variablen zu bilden, wählst du einfach die gewünschten 5 Variablen aus deinem Datensatz aus. Angenommen, dein Datensatz heißt `df` und die 10 Variablen heißen `var1` bis `var10`, dann kannst du so vorgehen: ```r # Auswahl der 5 Variablen für die Subskala subskala <- df[, c("var1", "var3", "var5", "var7", "var9")] ``` Falls du die Subskala als Summen- oder Mittelwertscore berechnen möchtest: ```r # Summenscore df$subskala_summe <- rowSums(subskala, na.rm = TRUE) # Mittelwertscore df$subskala_mittelwert <- rowMeans(subskala, na.rm = TRUE) ``` Wähle die Variablen entsprechend deiner inhaltlichen oder statistischen Kriterien aus.
Die Fehlermeldung „auto.arima can only handle univariate time series“ in R bedeutet, dass die Funktion `auto.arima()` aus dem Paket **forecast** nur mit **eindimensionalen Zeitreihen** (al... [mehr]
Die Library **forecast** befindet sich im gleichnamigen Paket **forecast** in R. Du kannst das Paket mit folgendem Befehl installieren: ```R install.packages("forecast") ``` Danach kannst... [mehr]
Ein kategorialer Faktor ist eine Variable, die in verschiedene Gruppen oder Kategorien eingeteilt werden kann. Diese Kategorien sind qualitativ und nicht quantitativ, was bedeutet, dass sie keine nume... [mehr]
Behinderte Regression, auch bekannt als "robuste Regression", kann in der Analyse von standardisierten Variablen sinnvoll sein, weil sie weniger empfindlich gegenüber Ausreißern u... [mehr]
Die bivariate Korrelationsanalyse untersucht den Zusammenhang zwischen zwei Variablen, um festzustellen, ob und wie stark sie miteinander in Beziehung stehen. Sie liefert Informationen über die R... [mehr]
Die Aussagekraft einer Simulation hängt nicht nur von der Anzahl der Variablen ab, sondern auch von der Komplexität des Modells, der Qualität der Daten und der spezifischen Fragestellun... [mehr]
Bei der Formulierung von Hypothesen für zwei metrisch skalierte Variablen (quasi-intervall- und ratioskaliert) ist es wichtig, die Art der Beziehung zwischen den Variablen zu definieren. Hier sin... [mehr]
Wenn alle Trennschärfen in einem R-Modell (z.B. in der psychometrischen Analyse oder bei der Item-Response-Theorie) im Minus sind, bedeutet dies, dass die Items oderablen, die du analysierst, ein... [mehr]
Metrische Variablen, auch als quantitative Variablen bezeichnet, sind Variablen, die in einem numerischen Format vorliegen und für die eine sinnvolle mathematische Operation durchgeführt wer... [mehr]
Stetige Variablen sind solche, die unendlich viele Werte innerhalb eines bestimmten Intervalls annehmen können. Beispiele für stetige Variablen sind: 1. **Körpergröße** (z.B... [mehr]