Sind die Zyklen einer Permutation disjunkt?

Antwort

Ja, die Zyklenlängen einer Permutation sind disjunkt. Das bedeutet, dass jeder Zyklus einer Permutation eine Menge von Elementen enthält, die in keinem anderen Zyklus der gleichen Permutation vorkommen. In anderen Worten, jedes Element der Menge, auf der die Permutation definiert ist, gehört genau zu einem Zyklus.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Auf wie viele Arten können 6 CDs im Regal angeordnet werden?

Die 6 CDs können auf **720 verschiedene Arten** im Regal angeordnet werden. Das ergibt sich aus der Anzahl der Permutationen von 6 verschiedenen Objekten, also \( 6! \) (6 Fakultät): \( 6!... [mehr]

Was bedeutet permutationsinvariante Aggregation?

Eine permutationsinvariante Aggregation ist ein Begriff aus der Mathematik und dem maschinellen Lernen, insbesondere im Zusammenhang mit der Verarbeitung von Mengen (englisch: "sets"). Sie b... [mehr]

Wie hängt das Produkt n*(n-1)*(n-2)*...*(n-k+1) mit n! zusammen?

Der Ausdruck \( n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1) \) ist das sogenannte **absteigende Produkt** von \( n \) mit \( k \) Faktoren. Es wird auch als **Fakultätsbruch** oder **fal... [mehr]