Um den Ausdruck \((5y-1)(5y+1)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ a^2 - b^2 = (a-b)(a+b) \] In diesem Fall ist \(a = 5y\) und \(... [mehr]
Um den Ausdruck \( x^3 - x \) mithilfe der binomischen Formeln zu zerlegen, kannst du zunächst den gemeinsamen Faktor \( x \) herausziehen: \[ x^3 - x = x(x^2 - 1) \] Der Ausdruck \( x^2 - 1 \) ist eine Differenz von Quadraten, die sich mit der Formel \( a^2 - b^2 = (a - b)(a + b) \) zerlegen lässt. In diesem Fall ist \( a = x \) und \( b = 1 \): \[ x^2 - 1 = (x - 1)(x + 1) \] Setze in den ursprünglichen Ausdruck ein: \[ x(x^2 - 1) = x(x - 1)(x + 1) \] Somit ist die vollständige Zerlegung von \( x^3 - x \): \[ x^3 - x = x(x - 1)(x + 1) \]
Um den Ausdruck \((5y-1)(5y+1)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ a^2 - b^2 = (a-b)(a+b) \] In diesem Fall ist \(a = 5y\) und \(... [mehr]
Um den Ausdruck \((3x+2)(3x-2)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die besagt, dass \((a+b)(a-b) = a^2 - b^2\). Hier ist \(a = 3x\) und \(b = 2\).... [mehr]
Um den Ausdruck \(36c^2 + 6c\) herauszuheben, kannst du den größten gemeinsamen Faktor (Ggf) bestimmen. In diesem Fall ist der Ggf \(6c\). Du kannst den wie folgt umformen: \[ 36c^2 + 6c... [mehr]
Der Ausdruck \((A^3 - B^3)(A^3 + B^3)\) kann mithilfe der Identität für die Differenz und die Summe von Kuben vereinfacht werden. Zuerst erkennen wir, dass: \[ A^3 - B^3 = (A - B)(A^2 + A... [mehr]
Um den Ausdruck \((4a-5)(4a+5)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ (a-b)(a+b) = a^2 - b^2 \] In diesem Fall ist \(a = 4a\) und \(... [mehr]
Der Ausdruck \( a^2 - 8y + 16 \) kann als Quadrat eines Binoms geschrieben werden. Er lässt sich umformen zu: \[ a^2 - 8y + 16 = (a - 4)^2 \] Das bedeutet, dass der Ausdruck das Quadrat des Bin... [mehr]
Der Ausdruck \(x^2 - 9y^2\) kann als Differenz von Quadraten betrachtet werden. Die binomische Formel für die Differenz von Quadraten lautet: \[ a^2 - b^2 = (a - b)(a + b) \] In deinem Fall ist... [mehr]
Um den Ausdruck \((x + 6)(x + 6)\) zu vereinfachen, kannst du die binomische Formel verwenden. Dies ist ein Quadrat eines Binoms, das wie folgt aussieht: \[ (a + b)^2 = a^2 + 2ab + b^2 \] In deinem... [mehr]
Um den Ausdruck \( x^2 - 6 - (x + 2)(x - 2) + 2x \) zu vereinfachen, folge diesen Schritten: 1. Berechne das Produkt \( (x + 2)(x - 2) \): \[ (x + 2)(x - 2 = x^2 4 ] 2. Setze das Ergebnis in... [mehr]
Um die Probe für \( p = 2 \) und \( q = \frac{1}{2} \) durchzuführen, setzen wir die Werte in den Ausdruck \( (p^2 + pq + q^2)(p - q) \) ein. 1. Berechne \( p^2 \): \[ p^2 = 2^2 = 4... [mehr]