Um den Prozentsatz von 20 kg im Verhältnis zu 60 kg zu berechnen, verwendest du die Formel: \[ \text{Prozentsatz} = \left( \frac{\text{Teil}}{\text{Ganzes}} \right) \times 100 \] In diesem Fall... [mehr]
Um das Gewicht eines Körpers zu berechnen, der eine bestimmte Form hat, benötigst du die Dichte des Materials und das Volumen. Da du die Werte für a (3 m) und b (6 m) angibst, gehe ich davon aus, dass es sich um die Abmessungen eines Quaders handelt. Das Volumen \( V \) eines Quaders wird mit der Formel \( V = a \times b \times h \) berechnet, wobei \( h \) die Höhe ist. Da die Höhe nicht angegeben ist, kann das Volumen nicht vollständig berechnet werden. Wenn du das Gewicht von 6000 kg angibst, ist dies bereits das Gewicht des Körpers. Um die Dichte zu berechnen, kannst du die Formel \( \text{Dichte} = \frac{\text{Gewicht}}{\text{Volumen}} \) verwenden, sobald du die Höhe hast. Bitte gib die Höhe an, um die Berechnung abzuschließen.
Um den Prozentsatz von 20 kg im Verhältnis zu 60 kg zu berechnen, verwendest du die Formel: \[ \text{Prozentsatz} = \left( \frac{\text{Teil}}{\text{Ganzes}} \right) \times 100 \] In diesem Fall... [mehr]
Um das Gewicht des Kindes zu bestimmen, nennen wir das Gewicht des Kindes \( x \). Laut der Aussage wiegt das Kind 16 kg plus ein Viertel seines Gewichts. Das lässt sich mathematisch so ausdr&uum... [mehr]
Um 19 Prozent zu 2187 zu addieren, berechnest du zunächst 19 % von 2187: 2187 × 0,19 = 415,53 Dann addierst du diesen Wert zu 2187: 2187 + 415,53 = 2602,53 Das Ergebnis ist **2602,53**.
Um die zurückgelegte Strecke bei einer Geschwindigkeit von 208 km/h für 0,8 Sekunden zu berechnen, kannst du die Formel für die Strecke verwenden: \[ \text{Strecke} = \text{Geschwindig... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
Um die rationalen Zahlen \((-6,6)\) und \((+1,2)\) zu subtrahieren subtrahierst du die entsprechenden Werte: \[ (-6,6) - (+1,2) = (-6 - 1, 6 - 2) = (-7, 4) \] Das Ergebnis ist \((-7, 4)\).
Die Berechnung der rationalen Zahlen \((-40) - (+12)\) erfolgt wie folgt: \[ -40 - 12 = -40 + (-12) = -52 \] Das Ergebnis ist \(-52\).
Um die Fläche eines Rechtecks zu berechnen, multiplizierst du die Länge (l) mit der Breite (b). Die Formel lautet: \[ \text{Fläche} = l \times b \] Wenn du den Umfang berechnen mö... [mehr]
Um die Probe für \( a = 2 \) durchzuführen, setzen wir \( a \) in den Ausdruck \( (3a^3 + 4a^2)(-2a - a^5) \) ein. 1. Berechne zuerst \( 3a^3 + 4a^2 \): \[ 3(2^3) + 4(2^2) = 3(8) + 4(... [mehr]
3(2)^2 = 3 * 4 = 12.