Um einen Wert zu berechnen, musst du zunächst wissen, um welchen Wert es sich handelt und welche Informationen oder Daten du dafür benötigst. Hier sind einige allgemeine Schritte, die d... [mehr]
Um den Ausdruck \(0,05 : 3,0 \cd 10^{-24}\) zu berechnen, führst du die Division durch: 1. Zuerst teilst du \(0,05\) durch \(3,0\): \[ 0,05 : 3,0 = \frac{0,05}{3,0} \approx 0,01667 \] 2. Dann multiplizierst du das Ergebnis mit \(10^{-24}\): \[ 0,01667 \cdot 10^{-24} \approx 1,667 \cdot 10^{-26} \] Das Ergebnis der Berechnung ist also ungefähr \(1,667 \cdot 10^{-26}\).
Um einen Wert zu berechnen, musst du zunächst wissen, um welchen Wert es sich handelt und welche Informationen oder Daten du dafür benötigst. Hier sind einige allgemeine Schritte, die d... [mehr]
Um 19 Prozent zu 2187 zu addieren, berechnest du zunächst 19 % von 2187: 2187 × 0,19 = 415,53 Dann addierst du diesen Wert zu 2187: 2187 + 415,53 = 2602,53 Das Ergebnis ist **2602,53**.
Um 19 Prozent zu 2700 zu addieren, berechnest du zuerst 19 % von 2700: 19 % von 2700 = 0,19 × 2700 = 513 Dann addierst du diesen Wert zu 2700: 2700 + 513 = 3213 Das Ergebnis ist **3213**.
Um die zurückgelegte Strecke bei einer Geschwindigkeit von 208 km/h für 0,8 Sekunden zu berechnen, kannst du die Formel für die Strecke verwenden: \[ \text{Strecke} = \text{Geschwindig... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
Um die rationalen Zahlen \((-6,6)\) und \((+1,2)\) zu subtrahieren subtrahierst du die entsprechenden Werte: \[ (-6,6) - (+1,2) = (-6 - 1, 6 - 2) = (-7, 4) \] Das Ergebnis ist \((-7, 4)\).
Die Berechnung der rationalen Zahlen \((-40) - (+12)\) erfolgt wie folgt: \[ -40 - 12 = -40 + (-12) = -52 \] Das Ergebnis ist \(-52\).
Um die Fläche eines Rechtecks zu berechnen, multiplizierst du die Länge (l) mit der Breite (b). Die Formel lautet: \[ \text{Fläche} = l \times b \] Wenn du den Umfang berechnen mö... [mehr]
Um die Probe für \( a = 2 \) durchzuführen, setzen wir \( a \) in den Ausdruck \( (3a^3 + 4a^2)(-2a - a^5) \) ein. 1. Berechne zuerst \( 3a^3 + 4a^2 \): \[ 3(2^3) + 4(2^2) = 3(8) + 4(... [mehr]
3(2)^2 = 3 * 4 = 12.