Um zu zeigen, dass \( e^x \) schneller wächst als \( x^n \) für jedes feste \( n \), kann man die Regel von l'Hôpital verwenden. Hier ist der Schritt-für-Schritt-Ansatz: 1.... [mehr]
Die l'Hospital-Regel kann angewendet werden, wenn du den Grenzwert eines Quotienten von zwei Funktionen untersuchen möchtest und dabei auf eine unbestimmte Form stößt, wie zum Beispiel \( \frac{0}{0} \) oder \( \frac{\infty}{\infty} \). Die Regel besagt, dass du den Grenzwert des Quotienten der Ableitungen der beiden Funktionen betrachten kannst. Das bedeutet, wenn \( \lim_{x \to c} \frac{f(x)}{g(x)} \) eine unbestimmte Form ergibt, dann gilt: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] vorausgesetzt, der Grenzwert auf der rechten Seite existiert oder ist unendlich. Du kannst die Regel mehrmals anwenden, falls du weiterhin auf eine unbestimmte Form stößt.
Um zu zeigen, dass \( e^x \) schneller wächst als \( x^n \) für jedes feste \( n \), kann man die Regel von l'Hôpital verwenden. Hier ist der Schritt-für-Schritt-Ansatz: 1.... [mehr]
Um den Grenzwert von Exponentialfunktionen (e-Funktionen) zu bestimmen, kannst du folgende Schritte befolgen: 1. **Identifiziere die Funktion**: Bestimme die Funktion, deren Grenzwert du berechnen m&... [mehr]
Um den größtmöglichen Radius \( R \) zu bestimmen, für den die Reihe \[ \sum_{k=1}^{\infty} \frac{k!}{k^k} x^k \] für alle \( x \in \mathbb{R} \) mit \( |x| < R \) abso... [mehr]
Der Grenzwert von \(\frac{e^x}{x}\) für \(x\) gegen 0 ist nicht definiert, da der Ausdruck für \(x = 0\) nicht definiert ist (wir erhalten eine Division durch Null). Wenn du jedoch den Grenz... [mehr]