10 Prozent von 8,83 sind 0,883.
Um die Wahrscheinlichkeit zu berechnen, ein grünes Gummibärchen aus dem Glas zu ziehen, musst du die Anzahl der grünen Gummibärchen durch die Gesamtanzahl der Gummibärchen teilen. Die Gesamtanzahl der Gummibärchen ist: 86 (rote) + 40 (grüne) + 43 (weiße) + 43 (gelbe) + 46 (orangene) = 258 Die Anzahl der grünen Gummibärchen ist 40. Die Wahrscheinlichkeit, ein grünes Gummibärchen zu ziehen, ist also: \[ \frac{40}{258} \] Diese Bruchzahl kann weiter vereinfacht werden: \[ \frac{40}{258} = \frac{20}{129} \] In Dezimalform ist das ungefähr: \[ \frac{20}{129} \approx 0,155 \] Also beträgt die Wahrscheinlichkeit, ein grünes Gummibärchen zu ziehen, etwa 15,5 %.
10 Prozent von 8,83 sind 0,883.
Gegeben ist das Integral: \[ \int_{0}^{0{,}25} \frac{dx}{\sqrt{x} \cdot (1 - \sqrt{x})} \] Um das Integral zu lösen, bietet sich die Substitution \( u = \sqrt{x} \) an. **Schritt 1: Substituti... [mehr]
Wahrscheinlichkeiten, relative Häufigkeiten und absolute Häufigkeiten sind drei verschiedene Begriffe aus der Statistik, die oft miteinander verwechselt werden. Hier die Unterschiede: **1.... [mehr]
Bei drei Würfen mit einem normalen Würfel (6 Seiten) möchtest du wissen, wie groß die Wahrscheinlichkeit ist, dass **alle drei Würfe verschiedene Augenzahlen zeigen**. **L&o... [mehr]
Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Um die Wahrscheinlichkeit zu berechnen, dass man beim Würfeln nur verschiedene Augenzahlen erhält, muss zunächst klar sein, **wie viele Würfel** geworfen werden. Da das in deiner F... [mehr]
Der Rechenausdruck lautet: (26 + 57) – (87 – 73) Nun berechnen wir Schritt für Schritt: 1. 26 + 57 = 83 2. 87 – 73 = 14 3. 83 – 14 = 69 Das Ergebnis ist **69**.
Hier sind die Lösungen und die Rechenausdrücke ohne Klammern: 1. **17 - (25 - 18)** - Zuerst mit Klammern: 25 - 18 = 7, dann 17 - 7 = **10** - Ohne Klammern: **17 - 25 - 18** - Rec... [mehr]
Um den Prozentsatz zu berechnen, teilst du 2400 durch 41575 und multiplizierst das Ergebnis mit 100: \( \frac{2400}{41575} \times 100 = 5,77 \% \) (gerundet auf zwei Nachkommastellen). 2400 sind als... [mehr]
Um den Prozentsatz zu berechnen, teilst du die Zahl 8912 durch 38711 und multiplizierst das Ergebnis mit 100: \[ \text{Prozentsatz} = \left(\frac{8912}{38711}\right) \times 100 \] Rechnung: \[ \fra... [mehr]