Wie ändert sich das Volumen, wenn man alle Kantenlängen verdoppelt? In Potenzen schreiben.

Antwort

Wenn alle Kantenlängen eines dreidimensionalen Körpers verdoppelt werden, ändert sich das Volumen um den Faktor \(2^3\), da das Volumen eines Körpers proportional zur dritten Potenz der Kantenlängen ist. Das bedeutet, das Volumen vervielfacht sich um den Faktor \(8\). In Potenzen ausgedrückt: Wenn das ursprüngliche Volumen \(V\) ist, dann wird das neue Volumen \(V' = 8V\).

KI fragen

Verwandte Fragen

Wie berechnet man, wie viele Schachteln mit den Maßen l x b x h optimal in einen Packkarton mit den Maßen L x B x H in Zentimeter passen?

Um zu berechnen, wie viele kleinere Schachteln (mit den Maßen l₁ × b₁ × h₁) optimal in einen größeren Packkarton (mit den Maßen L × B × H) passen, nutzt... [mehr]

Wie berechnet man, wie viele Schachteln mit l x b x h cm in einen Karton mit l x b x h cm passen?

Um zu berechnen, wie viele kleinere Schachteln (mit den Maßen l₁ × b₁ × h₁) in einen größeren Packkarton (mit den Maßen L × B × H) passen, nutzt du folge... [mehr]

Wie hoch steht der Sand in einer 4 m x 2,5 m großen Sandkiste bei 2 Kubikmetern Sand?

Um die Höhe des Sands in der Sandkiste zu berechnen, nutzt du die Formel für das Volumen eines Quaders: **Volumen = Grundfläche × Höhe** Gegeben: - Grundfläche: 4 m &t... [mehr]

Wie ändert sich das Kegelvolumen bei doppeltem Radius und halber Höhe?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]

Wie verändert sich das Volumen eines Kegels, wenn Radius und Höhe verdoppelt werden?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]

Wie verändert sich das Volumen eines Kegels, wenn die Höhe verdoppelt wird?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]