Was bedeutet bei Stellenwertsystemen 3 3=11?

Antwort

In einem Stellenwertsystem mit der Basis 3 (auch Ternärsystem genannt) bedeutet die Zahl "11" etwas anderes als im Dezimalsystem. Im Ternärsystem hat jede Stelle einen Wert, der eine Potenz von 3 darstellt, ähnlich wie im Dezimalsystem jede Stelle eine Potenz von 10 darstellt. Die Zahl "11" im Ternärsystem wird wie folgt interpretiert: - Die rechte Stelle (1) steht für \(3^0\) (also 1). - Die linke Stelle (1) steht für \(3^1\) (also 3). Daher ist "11" im Ternärsystem gleich \(1 \times 3^1 + 1 \times 3^0 = 3 + 1 = 4\) im Dezimalsystem. Das bedeutet, dass die Zahl "11" im Ternärsystem der Zahl 4 im Dezimalsystem entspricht.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie viel ist 3 plus 4?

Drei plus vier ergibt sieben.

Zahlen bis 10000 zerlegen: 5816, 1495, 7238, 4187, 9251, 9948, 6717, 2864.

Hier sind die Zerlegungen der Zahlen in Tausender, Hunderter, Zehner und Einer: a) 5816 = 5000 + 800 + 10 + 6 1495 = 1000 + 400 + 90 + 5 7238 = 7000 + 200 + 30 + 8 4187 = 4000 + 100 + 80 + 7... [mehr]

Was ist das Ergebnis von 1 plus 293492841?

1 plus 293492841 ergibt 293492842.

Gemeinsamer Teiler von 445 und 1000?

Der größte gemeinsame Teiler (ggT) von 445 und 1000 ist 5.

Was ist 27000 geteilt durch 1100?

27.000 geteilt durch 1.100 ergibt 24,545454545... oder gerundet 24,55.

Was ist 5/7 + 6 + 7?

Um die Rechnung \( \frac{5}{7} + 6 + 7 \) durchzuführen, addiere zuerst die ganzen Zahlen: \( 6 + 7 = 13 \). Dann addiere \( \frac{5}{7} \) zu \( 13 \): \( 13 + \frac{5}{7} = \frac{13 \cdot 7}... [mehr]

Was ist der Überschlag von 13489?

Der Überschlag von 13489 bezieht sich in der Regel auf eine grobe Schätzung oder Rundung der Zahl. Wenn du 13489 auf die nächste Tausend runden möchtest, wäre der Übersch... [mehr]

Was ist der Überschlag von 4784?

Der Überschlag von 4784 bezieht sich in der Regel auf eine grobe Schätzung oder Rundung. Wenn du den Wert auf die nächste Tausend runden möchtest, wäre der Überschlag 500... [mehr]

Was sind Aufgaben zum Anordnen rationaler Zahlen?

Hier sind drei Aufgaben zum Thema "Rationale Zahlen anordnen": 1. Ordne die folgenden rationalen Zahlen der Größe nach: \( \frac{3}{4}, -\frac{1}{2}, 0, \frac{2}{3}, -\frac{3}{4}... [mehr]