Sinus von 4 Grad multipliziert mit 220?

Antwort

Der Sinus von 4 Grad multipliziert mit 220 ergibt: \[ \(4^\circ) \times 220 \] Zuerst den Sinus von 4 Grad berechnen: \[ \sin(4^\circ) \approx 0,06976 \] Dann das Ergebnis mit 220 multiplizieren: \[ 0,06976 \times 220 \approx 15,3472 \] Das Ergebnis ist also ungefähr 15,3472.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Multipliziere und vereinfache (5 - a) • (12a - 5b).

Um die Ausdrücke zu multiplizieren, wendest du die distributive Eigenschaft an. Das bedeutet, dass du jeden Term im ersten Ausdruck mit jedem Term im zweiten Ausdruck multiplizierst. Hier ist di... [mehr]

Multipliziere (3-2b)(5a+4-3c)

Um den Ausdruck \((3-2b)(5a+4-3c)\) zu multiplizieren, verwendest du die distributive Eigenschaft (auch bekannt als das Ausmultiplizieren). Hier sind die Schritte: 1. Multipliziere \(3\) mit jedem... [mehr]

Multipliziere (a+b)(4+c+d).

Um den Ausdruck \((a+b)(4+c+d)\) zu multiplizieren, verwendest du die distributive Eigenschaft. Das bedeutet, dass du jeden Term im ersten Faktor mit jedem Term im zweiten Faktor multiplizierst. Hie... [mehr]

Was ist (-66) • (-2) : (-3)?

Um den Ausdruck \((-66) \cdot (-2) : (-3)\) zu berechnen, folge diesen Schritten: 1. Berechne \((-66) \cdot (-2)\): \[ -66 \cdot -2 = 132 \] 2. Teile das Ergebnis durch \(-3\): \[ 132... [mehr]

Was ist der Sinus von Alpha in einem Dreieck mit Ankathete 2.8 cm, Hypotenuse 4 cm und Gegenkathete 2.8 cm?

Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]

Was ist der Sinus von Alpha in einem Dreieck mit Hypotenuse 2,5 cm, Gegenkathete 3 cm und Ankathete 3,9 cm?

In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]

Was ist Sin( Alpha) eines Dreiecks mit Hypotenuse 4 cm, Ankathete 3,4 cm und Gegenkathete 2,1 cm?

Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]

Beurteile die Aussage: Keine Gleichung vierten Grades hat die Lösungen -5, 0 und 5.

Die Aussage ist falsch. Eine Gleichung vierten Grades kann bis zu vier Lösungen (Wurzeln) haben, und es ist möglich, dass sie die Lösungen -5, 0 und 5 hat. Um eine solche Gleichung zu k... [mehr]

Jede Gleichung dritten Grades hat mindestens eine Lösung.

Die Aussage ist korrekt. Jede Gleichung dritten Grades (auch kubische Gleichung genannt) hat mindestens eine Lösung im Bereich der komplexen Zahlen. Dies folgt aus dem Fundamentalsatz der Algebra... [mehr]