Um die Ausdrücke zu multiplizieren, wendest du die distributive Eigenschaft an. Das bedeutet, dass du jeden Term im ersten Ausdruck mit jedem Term im zweiten Ausdruck multiplizierst. Hier ist di... [mehr]
Der Sinus von 4 Grad multipliziert mit 220 ergibt: \[ \(4^\circ) \times 220 \] Zuerst den Sinus von 4 Grad berechnen: \[ \sin(4^\circ) \approx 0,06976 \] Dann das Ergebnis mit 220 multiplizieren: \[ 0,06976 \times 220 \approx 15,3472 \] Das Ergebnis ist also ungefähr 15,3472.
Um die Ausdrücke zu multiplizieren, wendest du die distributive Eigenschaft an. Das bedeutet, dass du jeden Term im ersten Ausdruck mit jedem Term im zweiten Ausdruck multiplizierst. Hier ist di... [mehr]
Um den Ausdruck \((3-2b)(5a+4-3c)\) zu multiplizieren, verwendest du die distributive Eigenschaft (auch bekannt als das Ausmultiplizieren). Hier sind die Schritte: 1. Multipliziere \(3\) mit jedem... [mehr]
Um den Ausdruck \((a+b)(4+c+d)\) zu multiplizieren, verwendest du die distributive Eigenschaft. Das bedeutet, dass du jeden Term im ersten Faktor mit jedem Term im zweiten Faktor multiplizierst. Hie... [mehr]
Um den Ausdruck \((-66) \cdot (-2) : (-3)\) zu berechnen, folge diesen Schritten: 1. Berechne \((-66) \cdot (-2)\): \[ -66 \cdot -2 = 132 \] 2. Teile das Ergebnis durch \(-3\): \[ 132... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]
In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]
Die Aussage ist falsch. Eine Gleichung vierten Grades kann bis zu vier Lösungen (Wurzeln) haben, und es ist möglich, dass sie die Lösungen -5, 0 und 5 hat. Um eine solche Gleichung zu k... [mehr]
Die Aussage ist korrekt. Jede Gleichung dritten Grades (auch kubische Gleichung genannt) hat mindestens eine Lösung im Bereich der komplexen Zahlen. Dies folgt aus dem Fundamentalsatz der Algebra... [mehr]