Wie berechne ich die Seitenlänge eines Quadrats aus dem Umfang?

Antwort

Um die Seitenlänge eines Quadrats zu berechnen, wenn der Umfang gegeben ist, kannst du die folgende Formel verwenden: \[ \text{Seitenlänge} = \frac{\text{Umfang}}{4} \] Da der Umfang eines Quadrats gleich der Summe aller vier Seiten ist, teilst du einfach den Umfang durch 4, um die Länge einer Seite zu erhalten.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie berechnet man die Länge eines Vorfahrtsstraßen-Schildes mit 3600 cm² Fläche und die Fläche des halb so langen gelben Quadrats?

Gegeben: - Fläche des Schildes: \( A_{\text{Schild}} = 3600\,\text{cm}^2 \) - Das gelbe Quadrat ist halb so lang wie das Schild (gemeint ist: die Seitenlänge des Quadrats ist halb so gro&sz... [mehr]

(A^2 + B^2)²?

Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]

(9a + 15b)²?

Der Ausdruck \((9a + 15b)^2\) kann mit der binomischen Formel \((x + y)^2 = x^2 + 2xy + y^2\) erweitert werden. Hier ist \(x = 9a\) und \(y = 15b\). Die Berechnung erfolgt wie folgt: \[ (9a + 15b... [mehr]

(7a-1)²?

Um den Ausdruck \((7a - 1)^2\) zu quadrieren, kannst du die Formel für das Quadrat eines Binoms verwenden: \((x - y)^2 = x^2 - 2xy + y^2\). Hier ist \(x = 7a\) und \(y = 1\). Also: \[ (7a - 1... [mehr]

(A+5)²?

Die Formel für das Quadrat eines Binoms lautet \((a + b)^2 = a^2 + 2ab + b^2\). Für \((A + 5)^2\) ergibt sich: \[ (A + 5)^2 = A^2 + 2 \cdot A \cdot 5 + 5^2 \] Das vereinfacht sich zu: \... [mehr]

(0,75a + 0,5)²?

Um den Ausdruck \((0,75a + 0,5)^2\) zu vereinfachen, kannst du die binomische Formel \((x + y)^2 = x^2 +2xy + y2\) anwenden. Hier ist \(x = 0,75a\) und \(y = 0,5\). 1. Berechne \(x^2\): \[ (0,7... [mehr]

(5x-2y) hoch 2?

Der Ausdruck \((5x - 2y)^2\) kann durch Anwendung der binomischen Formel \((a - b)^2 = a^2 - 2ab + b^2\) vereinfacht werden. Hier ist \(a = 5x\) und \(b = 2y\). Die Berechnung ergibt: \[ (5x - 2y)^2... [mehr]

Bilde das Binom a² - 8y + 16?

Der Ausdruck \( a^2 - 8y + 16 \) kann als Quadrat eines Binoms geschrieben werden. Er lässt sich umformen zu: \[ a^2 - 8y + 16 = (a - 4)^2 \] Das bedeutet, dass der Ausdruck das Quadrat des Bin... [mehr]

Wende die zweite Binomische Formel auf (x-5y)² an.

Die zweite binomische Formel lautet: \((a - b)^2 = a^2 - 2ab + b^2\). Für den Ausdruck \((x - 5y)^2\) setzen wir \(a = x\) und \(b = 5y\) ein: \[ (x - 5y)^2 = x^2 - 2 \cdot x \cdot 5y + (5y)^2... [mehr]