Um die Höhe des Sands in der Sandkiste zu berechnen, nutzt du die Formel für das Volumen eines Quaders: **Volumen = Grundfläche × Höhe** Gegeben: - Grundfläche: 4 m &t... [mehr]
Um die neuen Werte für das Volumen und die Oberfläche eines quaderförmigen Pakets zu berechnen, wenn alle Kantenlängen halbiert werden, können wir die folgenden Schritte durchführen: 1. **Volumen**: Das Volumen \( V \) eines Quaders wird durch die Formel \( V = a \cdot b \cdot c \) berechnet, wobei \( a \), \( b \) und \( c \) die Kantenlängen sind. Wenn alle Kantenlängen halbiert werden, wird das neue Volumen \( V' \) wie folgt berechnet: \[ V' = \left(\frac{a}{2}\right) \cdot \left(\frac{b}{2}\right) \cdot \left(\frac{c}{2}\right) = \frac{1}{8} \cdot (a \cdot b \cdot c) = \frac{1}{8} \cdot V \] Da das ursprüngliche Volumen 12 Liter (oder 12000 cm³) beträgt: \[ V' = \frac{1}{8} \cdot 12000 \, \text{cm}^3 = 1500 \, \text{cm}^3 \] 2. **Oberfläche**: Die Oberfläche \( A \) eines Quaders wird durch die Formel \( A = 2(ab + ac + bc) \) berechnet. Wenn alle Kantenlängen halbiert werden, wird die neue Oberfläche \( A' \) wie folgt berechnet: \[ A' = 2\left(\frac{a}{2} \cdot \frac{b}{2} + \frac{a}{2} \cdot \frac{c}{2} + \frac{b}{2} \cdot \frac{c}{2}\right) = \frac{1}{4} \cdot (2(ab + ac + bc)) = \frac{1}{4} \cdot A \] Da die ursprüngliche Oberfläche 1600 cm² beträgt: \[ A' = \frac{1}{4} \cdot 1600 \, \text{cm}^2 = 400 \, \text{cm}^2 \] Zusammenfassend ergibt sich: - Neues Volumen: 1500 cm³ - Neue Oberfläche: 400 cm²
Um die Höhe des Sands in der Sandkiste zu berechnen, nutzt du die Formel für das Volumen eines Quaders: **Volumen = Grundfläche × Höhe** Gegeben: - Grundfläche: 4 m &t... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]
Um das Fassungsvermögen (Volumen) eines rechteckigen Gefäßes zu berechnen, multiplizierst du Länge, Breite und Höhe: 80 cm × 30 cm × 40 cm = 96 000 cm³ Um... [mehr]