Um das Fassungsvermögen (Volumen) eines rechteckigen Gefäßes zu berechnen, multiplizierst du Länge, Breite und Höhe: 80 cm × 30 cm × 40 cm = 96 000 cm³ Um... [mehr]
Um das Volumen und die Masse des Prismas zu berechnen, folge diesen Sch: 1. **Berechnung der Grundfläche (G):** Die Grundfläche ist ein gleichschenkliges Dreieck. Die Formel für die Fläche eines Dreiecks lautet: \[ G = \frac{1}{2} \cdot c \cdot h_c \] Setze die gegebenen Werte ein: \[ G = \frac{1}{2} \cdot 3{,}5 \, \text{cm} \cdot 6{,}4 \, \text{cm} = \frac{1}{2} \cdot 22{,}4 \, \text{cm}^2 = 11{,}2 \, \text{cm}^2 \] 2. **Berechnung des Volumens (V) des Prismas:** Das Volumen eines Prismas berechnet sich durch die Grundfläche multipliziert mit der Höhe (h): \[ V = G \cdot h \] Setze die Werte ein: \[ V = 11{,}2 \, \text{cm}^2 \cdot 9{,}5 \, \text{cm} = 106{,}4 \, \text{cm}^3 \] 3. **Berechnung der Masse (m) des Prismas:** Die Masse berechnet sich durch das Volumen multipliziert mit der Dichte (ρ): \[ m = V \cdot \rho \] Setze die Werte ein: \[ m = 106{,}4 \, \text{cm}^3 \cdot 2{,}7 \, \text{g/cm}^3 = 287{,}28 \, \text{g} \] Zusammengefasst: - Die Grundfläche (G) des Dreiecks beträgt 11,2 cm². - Das Volumen (V) des Prismas beträgt 106,4 cm³. - Die Masse (m) des Prismas beträgt 287,28 g.
Um das Fassungsvermögen (Volumen) eines rechteckigen Gefäßes zu berechnen, multiplizierst du Länge, Breite und Höhe: 80 cm × 30 cm × 40 cm = 96 000 cm³ Um... [mehr]
Gegeben ist das Integral: \[ \int_{0}^{0{,}25} \frac{dx}{\sqrt{x} \cdot (1 - \sqrt{x})} \] Um das Integral zu lösen, bietet sich die Substitution \( u = \sqrt{x} \) an. **Schritt 1: Substituti... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]
Der Rechenausdruck lautet: (26 + 57) – (87 – 73) Nun berechnen wir Schritt für Schritt: 1. 26 + 57 = 83 2. 87 – 73 = 14 3. 83 – 14 = 69 Das Ergebnis ist **69**.
Hier sind die Lösungen und die Rechenausdrücke ohne Klammern: 1. **17 - (25 - 18)** - Zuerst mit Klammern: 25 - 18 = 7, dann 17 - 7 = **10** - Ohne Klammern: **17 - 25 - 18** - Rec... [mehr]
Um den Prozentsatz zu berechnen, teilst du 2400 durch 41575 und multiplizierst das Ergebnis mit 100: \( \frac{2400}{41575} \times 100 = 5,77 \% \) (gerundet auf zwei Nachkommastellen). 2400 sind als... [mehr]
Um den Prozentsatz zu berechnen, teilst du die Zahl 8912 durch 38711 und multiplizierst das Ergebnis mit 100: \[ \text{Prozentsatz} = \left(\frac{8912}{38711}\right) \times 100 \] Rechnung: \[ \fra... [mehr]
Um die prozentuale Zunahme von 16 auf 19 zu berechnen, verwendest du folgende Formel: \[ \text{Prozentuale Zunahme} = \frac{\text{Neuer Wert} - \text{Alter Wert}}{\text{Alter Wert \times 100 \] Setz... [mehr]