Um den Ausdruck \((6n + 0,5m)^2\) zu vereinfachen, kannst du die binomische Formel \((a + b)^2 = a^2 + 2ab + b^2\) anwenden. Hier ist \(a = 6n\ und \(b = 0,5m\). 1. Berechne \(a^2\): \[ (6n)^2... [mehr]
Der Ball kostet 0,05 Dollar. Hier ist die Erklärung: 1. Angenommen, der Ball kostet \( x \) Dollar. 2. Dann kostet der Schläger \( x + 1 \) Dollar, da er einen Dollar mehr kostet als der Ball. 3. Zusammen kosten der Schläger und der Ball \( x + (x + 1) = 1,10 \) Dollar. 4. Das ergibt die Gleichung: \( 2x + 1 = 1,10 \). 5. Subtrahiere 1 von beiden Seiten der Gleichung: \( 2x = 0,10 \). 6. Teile beide Seiten durch 2: \( x = 0,05 \). Der Ball kostet also 0,05 Dollar.
Um den Ausdruck \((6n + 0,5m)^2\) zu vereinfachen, kannst du die binomische Formel \((a + b)^2 = a^2 + 2ab + b^2\) anwenden. Hier ist \(a = 6n\ und \(b = 0,5m\). 1. Berechne \(a^2\): \[ (6n)^2... [mehr]
Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]
Der Ausdruck \((9a + 15b)^2\) kann mit der binomischen Formel \((x + y)^2 = x^2 + 2xy + y^2\) erweitert werden. Hier ist \(x = 9a\) und \(y = 15b\). Die Berechnung erfolgt wie folgt: \[ (9a + 15b... [mehr]
Der Ausdruck \((5x - 2y)^2\) kann durch Anwendung der binomischen Formel \((a - b)^2 = a^2 - 2ab + b^2\) vereinfacht werden. Hier ist \(a = 5x\) und \(b = 2y\). Die Berechnung ergibt: \[ (5x - 2y)^2... [mehr]
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Die Gleichung \(3x \cdot x\) kann vereinfacht werden zu \(3x^2\).
Um den Ausdruck \((9ab^2 - 6a^2b):3ab\) durch Faktorisieren zu lösen, gehen wir wie folgt vor: 1. **Faktorisieren des Zählers**: Der Ausdruck \(9ab^2 - 6a^2b\) kann faktorisieren werden... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]