Um die Brüche 5/18 und 1/18 zu addieren, addierst du die Zähler und behältst den Nenner bei: 5/18 + 1/18 = (5 + 1) / 18 = 6/18. kannst du den Bruch 6/18 kürzen. Der grö&szl... [mehr]
Die gegebene Ausdruck \( a \cdot a \cdot a / (x^2 \cdot x^2 \cdot x^2) \) kann mithilfe von Potenzen wie folgt umgeschrieben werden: \[ \frac{a^3}{x^6} \] Hierbei ist \( a^3 \) die Potenz von \( a \) und \( x^6 \) die Potenz von \( x \), da \( x^2 \cdot x^2 \cdot x^2 = x^{2+2+2} = x^6 \).
Um die Brüche 5/18 und 1/18 zu addieren, addierst du die Zähler und behältst den Nenner bei: 5/18 + 1/18 = (5 + 1) / 18 = 6/18. kannst du den Bruch 6/18 kürzen. Der grö&szl... [mehr]
Um den Ausdruck \( 15x - (9x + 7) + (6 - 2x) - (5x + 3) - xy \) zu vereinfachen, folge diesen Schritten: 1. Entferne die Klammern: \[ 15x - 9x - 7 + 6 - 2x - 5x - 3 - xy \] 2. Fasse die \(... [mehr]
Um den Ausdruck \( 15 \times -(9x + 7) + (6 - 2x) \cdot (5x + 3) - xy \) zu vereinfachen, gehen wir Schritt für Schritt vor. 1. **Erster Teil**: \( 15 \times -(9x + 7) \) \[ = -15 \times 9... [mehr]
Um die Gleichung \(3x + 8 + 6x - 3 = 32\) zu lösen, folge diesen Schritten: 1. Fasse die \(x\)-Terme und die konstanten Terme zusammen: \[ (3x + 6x) + (8 - 3) = 32 \] Das vereinfacht... [mehr]
3(2)^2 = 3 * 4 = 12.
Um die Probe für \( a = 2 \) in den Ausdruck \( (3a^2 + 4a^2)(-2a - a^5) \) durchzuführen, folge diesen Schritten: 1. Setze \( a = 2 \) in den Ausdruck ein: \[ (3(2)^2 + 4(2)^2)(-2(2)... [mehr]
Um den Ausdruck \( a(a+b) - (a^2+b)(a-b) \) zu vereinfachen, gehen wir Schritt für Schritt vor. 1. Zuerst multiplizieren wir die Terme aus: \[ a(a+b) = a^2 + ab \] \[ (a^2 + b)(a... [mehr]
Um die Gleichung zu lösen, schauen wir uns den Ausdruck an: \(-5 \times \frac{1}{2} = \frac{1}{8}\) Lücke. Zuerst berechnen wir \(-5 \times \frac{1}{2}\): \[ -5 \times \frac{1}{2} =\frac{5... [mehr]
Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Bitte stelle eine klare und präzise Frage.
Um den Ausdruck \((-2+x)^2\) zu vereinfachen, kannst du die binomische Formel anwenden. Die Formel für das Quadrat eines Binoms lautet: \[ (a + b)^2 = a^2 + 2ab + b^2 \] In deinem Fall ist \(a... [mehr]