Quaderförmiges Paket hat ein Volumen von 12 Litern und eine Oberfläche von 1600 cm². Berechne Oberfläche und Volumen, wenn alle Kantenlängen getrittelt werden.

Antwort

Um die neuen Werte für das Volumen und die Oberfläche eines quaderförmigen Pakets zu berechnen, wenn alle Kantenlängen getrittelt werden, gehen wir wie folgt vor: 1. **Gegeben:** - Volumen \( V = 12 \) Liter \( = 12000 \) cm³ (da 1 Liter = 1000 cm³) - Oberfläche \( A = 1600 \) cm² 2. **Kantenlängen:** Angenommen, die Kantenlängen des Quaders sind \( a \), \( b \) und \( c \). Dann gilt: \[ V = a \cdot b \cdot c = 12000 \, \text{cm}^3 \] \[ A = 2(ab + ac + bc) = 1600 \, \text{cm}^2 \] 3. **Kantenlängen getrittelt:** Wenn alle Kantenlängen getrittelt werden, werden sie durch \( \sqrt[3]{x} \) ersetzt, wobei \( x \) die ursprünglichen Kantenlängen sind. Das bedeutet: \[ a' = \sqrt[3]{a}, \quad b' = \sqrt[3]{b}, \quad c' = \sqrt[3]{c} \] 4. **Neues Volumen:** Das neue Volumen \( V' \) ist: \[ V' = a' \cdot b' \cdot c' = \sqrt[3]{a} \cdot \sqrt[3]{b} \cdot \sqrt[3]{c} = \sqrt[3]{abc} = \sqrt[3]{12000} \] Berechnung: \[ V' = \sqrt[3]{12000} \approx 22.91 \, \text{cm}^3 \] 5. **Neue Oberfläche:** Die neue Oberfläche \( A' \) ist: \[ A' = 2(a'b' + a'c' + b'c') = 2(\sqrt[3]{a} \cdot \sqrt[3]{b} + \sqrt[3]{a} \cdot \sqrt[3]{c} + \sqrt[3]{b} \cdot \sqrt[3]{c}) \] Dies ist komplizierter zu berechnen, da wir die genauen Werte von \( a, b, c \) benötigen. Eine Näherung kann jedoch durch die Annahme von gleichmäßigen Kantenlängen erfolgen. 6. **Zusammenfassung:** - Neues Volumen \( V' \approx 22.91 \, \text{cm}^3 \) - Die genaue neue Oberfläche kann nur mit den spezifischen Kantenlängen berechnet werden, die hier nicht gegeben sind. Für eine präzisere Berechnung der neuen Oberfläche wären die spezifischen Kantenlängen erforderlich.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Berechne die Masse eines Quaders aus Glas (p=2,5kg/dm3) mit den Abmessungen: a=8cm, b=55mm, h=7,5dm.

Um die Masse des Quaders aus Glas zu berechnen, benötigst du zunächst das Volumen des Quaders. Die Formel für das Volumen \( V \) eines Quaders lautet: \[ V = a \times b \times h \] D... [mehr]

Kugelvolumen mit Radius 1mm berechnen?

Das Volumen einer Kugel wird mit der Formel \( V = \frac{4}{3} \pi r^3 \) berechnet, wobei \( r \) der Radius der Kugel ist. Für einen Radius von 1 mm (0,1 cm) lautet die Berechnung: \[ V = \f... [mehr]

Formel nach h umstellen: V=1/3 a²xh.

Um die Formel \( V = \frac{1}{3} a^2 \cdot h \) nach \( h \) umzustellen, folge diesen Schritten: 1. Multipliziere beide Seiten der Gleichung mit 3, um den Bruch zu eliminieren: \[ 3V = a^2 \cd... [mehr]

Umforme die Formel V=1/3 a²xh nach h.

Um die Formel \( V = \frac{1}{3} a^2 h \) nach \( h \) umzustellen, folge diesen Schritten: 1. Multipliziere beide Seiten der Gleichung mit 3: \[ 3V = a^2 h \] 2. Teile beide Seiten durch \... [mehr]

Oberfläche einer sechseckigen Pyramide berechnen?

Um die Oberfläche einer sechseckigen Pyramide zu berechnen, benötigst du die Grundfläche und die Flächen der seitlichen Dreiecke. Hier sind die Schritte zur Berechnung: 1. **Berec... [mehr]