Quaderförmiges Paket hat ein Volumen von 12 Litern und eine Oberfläche von 1600 cm². Berechne Oberfläche und Volumen, wenn alle Kantenlängen getrittelt werden.

Antwort

Um die neuen Werte für das Volumen und die Oberfläche eines quaderförmigen Pakets zu berechnen, wenn alle Kantenlängen getrittelt werden, gehen wir wie folgt vor: 1. **Gegeben:** - Volumen \( V = 12 \) Liter \( = 12000 \) cm³ (da 1 Liter = 1000 cm³) - Oberfläche \( A = 1600 \) cm² 2. **Kantenlängen:** Angenommen, die Kantenlängen des Quaders sind \( a \), \( b \) und \( c \). Dann gilt: \[ V = a \cdot b \cdot c = 12000 \, \text{cm}^3 \] \[ A = 2(ab + ac + bc) = 1600 \, \text{cm}^2 \] 3. **Kantenlängen getrittelt:** Wenn alle Kantenlängen getrittelt werden, werden sie durch \( \sqrt[3]{x} \) ersetzt, wobei \( x \) die ursprünglichen Kantenlängen sind. Das bedeutet: \[ a' = \sqrt[3]{a}, \quad b' = \sqrt[3]{b}, \quad c' = \sqrt[3]{c} \] 4. **Neues Volumen:** Das neue Volumen \( V' \) ist: \[ V' = a' \cdot b' \cdot c' = \sqrt[3]{a} \cdot \sqrt[3]{b} \cdot \sqrt[3]{c} = \sqrt[3]{abc} = \sqrt[3]{12000} \] Berechnung: \[ V' = \sqrt[3]{12000} \approx 22.91 \, \text{cm}^3 \] 5. **Neue Oberfläche:** Die neue Oberfläche \( A' \) ist: \[ A' = 2(a'b' + a'c' + b'c') = 2(\sqrt[3]{a} \cdot \sqrt[3]{b} + \sqrt[3]{a} \cdot \sqrt[3]{c} + \sqrt[3]{b} \cdot \sqrt[3]{c}) \] Dies ist komplizierter zu berechnen, da wir die genauen Werte von \( a, b, c \) benötigen. Eine Näherung kann jedoch durch die Annahme von gleichmäßigen Kantenlängen erfolgen. 6. **Zusammenfassung:** - Neues Volumen \( V' \approx 22.91 \, \text{cm}^3 \) - Die genaue neue Oberfläche kann nur mit den spezifischen Kantenlängen berechnet werden, die hier nicht gegeben sind. Für eine präzisere Berechnung der neuen Oberfläche wären die spezifischen Kantenlängen erforderlich.

KI fragen

Verwandte Fragen

Wie hoch steht der Sand in einer 4 m x 2,5 m großen Sandkiste bei 2 Kubikmetern Sand?

Um die Höhe des Sands in der Sandkiste zu berechnen, nutzt du die Formel für das Volumen eines Quaders: **Volumen = Grundfläche × Höhe** Gegeben: - Grundfläche: 4 m &t... [mehr]

Wie ändert sich das Kegelvolumen bei doppeltem Radius und halber Höhe?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]

Wie verändert sich das Volumen eines Kegels, wenn Radius und Höhe verdoppelt werden?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]

Wie verändert sich das Volumen eines Kegels, wenn die Höhe verdoppelt wird?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]

Wie groß ist das Fassungsvermögen eines Gefäßes mit den Maßen 80 cm x 30 cm x 40 cm?

Um das Fassungsvermögen (Volumen) eines rechteckigen Gefäßes zu berechnen, multiplizierst du Länge, Breite und Höhe: 80 cm × 30 cm × 40 cm = 96 000 cm³ Um... [mehr]