Ein Drittel von \( 3^{33} \) ist: \[ \frac{1}{3} \times 3^{33} = 3^{32} \] Das bedeutet: Ein Drittel von \( 3^{33} \) ist \( 3^{32} \).
Ja, das ist korrekt. - Wenn du -1 hoch eine negative Potenz nimmst, ergibt das immer -1. Zum Beispiel: \((-1)^{-2} = \frac{1}{(-1)^2} = \frac{1}{1} = 1\), aber das Vorzeichen bleibt negativ, wenn die Potenz ungerade ist. - Wenn du -1 hoch eine positive Potenz nimmst, ergibt das immer 1, wenn die Potenz gerade ist, und -1, wenn die Potenz ungerade ist. Zum Beispiel: \((-1)^2 = 1\) und \((-1)^3 = -1\). Zusammengefasst: -1 hoch eine gerade positive Potenz ergibt 1, -1 hoch eine ungerade positive Potenz ergibt -1, und -1 hoch eine negative Potenz ergibt immer 1.
Ein Drittel von \( 3^{33} \) ist: \[ \frac{1}{3} \times 3^{33} = 3^{32} \] Das bedeutet: Ein Drittel von \( 3^{33} \) ist \( 3^{32} \).
Es sieht so aus, als wolltest du nach Prozentrechnung fragen. Prozentrechnung ist ein mathematisches Verfahren, um Anteile von einem Ganzen zu berechnen. Hier die wichtigsten Grundlagen: 1. **Prozent... [mehr]
Ein Algorithmus in der Mathematik ist eine eindeutige, schrittweise Vorgehensweise zur Lösung eines Problems. Er besteht aus einer endlichen Folge von Anweisungen, die nacheinander ausgeführ... [mehr]
Rationale Zahlen sind alle Zahlen, die als Bruch dargestellt werden können, wobei der Zähler und der Nenner ganze Zahlen sind und der Nenner nicht null ist. Das heißt, jede Zahl der Fo... [mehr]
Die 6. Sophie-Germain-Primzahl ist 17. Eine Sophie-Germain-Primzahl ist eine Primzahl \( p \), bei der auch \( 2p + 1 \) eine Primzahl ist. Die ersten sechs Sophie-Germain-Primzahlen sind: 2, 3, 5, 1... [mehr]
Der Begriff „Potenzkaskade“ ist kein standardisierter mathematischer Fachbegriff, taucht aber gelegentlich in verschiedenen Kontexten auf. Allgemein beschreibt das Wort „Kaskade&ldqu... [mehr]
Die eulersche Konstante, meist mit dem Buchstaben γ (Gamma) bezeichnet, ist eine mathematische Konstante, die in der Analysis und Zahlentheorie eine wichtige Rolle spielt. Ihr Wert beträgt... [mehr]
3 plus 3 ergibt 6.
62,34 Prozent von 3175,87 sind 1.979,74. Berechnung: 3175,87 × 0,6234 = 1.979,74
Die Wurzelrechnung beschäftigt sich mit dem Ziehen von Wurzeln, meist der Quadratwurzel. Das Wurzelziehen ist die Umkehrung des Potenzierens. Beispiel: Die Quadratwurzel von 9 ist 3, weil 3&s... [mehr]