Überschlagsrechnungen sind eine nützliche Methode, um schnell eine ungefähre Vorstellung von einem Ergebnis zu bekommen, ohne genaue Berechnungen durchführen zu müssen. Hier s... [mehr]
Um Klammern zu lösen, musst du die darin enthaltenen Terme entsprechend den Operationszeichen bearbeiten. Hier sind die grundlegenden Schritte: 1. **Klammer auflösen**: Multipliziere jeden Term innerhalb der Klammer mit dem Faktor, der vor der Klammer steht. 2. **Vorzeichen beachten**: Achte darauf, wie das Vorzeichen vor der Klammer ist. Ein Pluszeichen (+) bleibt gleich, ein Minuszeichen (-) kehrt die Vorzeichen der Terme innerhalb der Klammer um. Beispiel: 1. \( a(b + c) \) wird zu \( ab + ac \). 2. \( -a(b - c) \) wird zu \( -ab + ac \). Wenn du ein konkretes Beispiel hast, kann ich dir helfen, es zu lösen.
Überschlagsrechnungen sind eine nützliche Methode, um schnell eine ungefähre Vorstellung von einem Ergebnis zu bekommen, ohne genaue Berechnungen durchführen zu müssen. Hier s... [mehr]
Um die Klammern aufzulösen, kannst du die Formel für die Differenz der Quadrate verwenden: \[ (a + b)(a - b) = a^2 - b^2 \] In deinem Fall ist \(a = q\) und \(b = 19\). Das ergibt: \[... [mehr]
Die Gleichung \(3x \cdot x\) kann vereinfacht werden zu \(3x^2\).
Der Überschlag von 13489 bezieht sich in der Regel auf eine grobe Schätzung oder Rundung der Zahl. Wenn du 13489 auf die nächste Tausend runden möchtest, wäre der Übersch... [mehr]
Um den Ausdruck \((a+3b)²-(a-4b)²\) zu lösen, wenden wir die Formel für die Differenz der Quadrate an, die lautet: \(x² - y² = (x - y)(x + y)\). Setzen wir \(x = (a + 3b... [mehr]
Um den Preis für 34 Ordner zu berechnen, kannst du zuerst den Preis für einen Ordner ermitteln und dann mit der Anzahl der gewünschten Ordner multiplizieren. 1. Preis pro Ordner:... [mehr]
Um den Ausdruck \((a-b)(c-d) + c(a+b)\) zu lösen, gehen wir Schritt für Schritt vor. 1. Zuerst lösen wir die Klammern im ersten Teil \((a-b)(c-d)\): \[ (a-b)(c-d) = a \cdot c - a... [mehr]
Ja, die Funktion \( e^{-x^2} \) ist eine gerade Funktion. Eine Funktion \( f(x) \) ist gerade, wenn gilt: \( f(-x) = f(x) \) für alle \( x \) im Definitionsbereich der Funktion. Für \( f(x... [mehr]
Die Funktion \( e^x \) ist eine ungerade Funktion. Eine Funktion \( f(x) \) ist ungerade, wenn gilt: \( f(-x) = -f(x) \) für alle \( x \). Bei \( e^x \) gilt jedoch \( e^{-x} = \frac{1}{e^x} \),... [mehr]
12,5 % von 40 berechnest du, indem du 40 mit 0,125 multiplizierst. 40 × 0,125 = 5 Also sind 12,5 % von 40 gleich 5.