4 + 3 = 7
Um Klammern zu lösen, musst du die darin enthaltenen Terme entsprechend den Operationszeichen bearbeiten. Hier sind die grundlegenden Schritte: 1. **Klammer auflösen**: Multipliziere jeden Term innerhalb der Klammer mit dem Faktor, der vor der Klammer steht. 2. **Vorzeichen beachten**: Achte darauf, wie das Vorzeichen vor der Klammer ist. Ein Pluszeichen (+) bleibt gleich, ein Minuszeichen (-) kehrt die Vorzeichen der Terme innerhalb der Klammer um. Beispiel: 1. \( a(b + c) \) wird zu \( ab + ac \). 2. \( -a(b - c) \) wird zu \( -ab + ac \). Wenn du ein konkretes Beispiel hast, kann ich dir helfen, es zu lösen.
4 + 3 = 7
Zuerst wird der Ausdruck mit Klammern berechnet: 28 – (15 + 9) = 28 – 24 = 4Wenn du die Klammern weässt, bleibt der Ausdruck so stehen: 28 – 15 + 9 Nun rechnest du das oh... [mehr]
Hier sind die Lösungen und die Rechenausdrücke ohne Klammern: 1. **17 - (25 - 18)** - Zuerst mit Klammern: 25 - 18 = 7, dann 17 - 7 = **10** - Ohne Klammern: **17 - 25 - 18** - Rec... [mehr]
Hier sind die Lösungen Schritt für Schritt: **a) (35+16)+(26-17)=** Erst die Klammern: 35+16 = 51 26-17 = 9 Dann zusammenrechnen: 51+9 = **60** --- **b) (183-120)-(27-10+6)=**... [mehr]
Zuerst werden die Ausdrücke mit Klammern berechnet: 1. \( 17 - (25 - 18) \) - Zuerst die Klammer: \( 25 - 18 = 7 \) - Dann: \( 17 - 7 = 10 \) 2. \( 99 + (21 - 11) \) - Zuerst die Klamm... [mehr]
Überschlagsrechnungen sind eine nützliche Methode, um schnell eine ungefähre Vorstellung von einem Ergebnis zu bekommen, ohne genaue Berechnungen durchführen zu müssen. Hier s... [mehr]
Um die Klammern aufzulösen, kannst du die Formel für die Differenz der Quadrate verwenden: \[ (a + b)(a - b) = a^2 - b^2 \] In deinem Fall ist \(a = q\) und \(b = 19\). Das ergibt: \[... [mehr]
Die Gleichung \(3x \cdot x\) kann vereinfacht werden zu \(3x^2\).
Der Überschlag von 13489 bezieht sich in der Regel auf eine grobe Schätzung oder Rundung der Zahl. Wenn du 13489 auf die nächste Tausend runden möchtest, wäre der Übersch... [mehr]
Um den Ausdruck \((a+3b)²-(a-4b)²\) zu lösen, wenden wir die Formel für die Differenz der Quadrate an, die lautet: \(x² - y² = (x - y)(x + y)\). Setzen wir \(x = (a + 3b... [mehr]