Um die nächste Zahl in der Sequenz zu bestimmen, schauen wir uns die Differenzen zwischen den Zahlen an: - 80 - 76 = 4 - 88 - 80 = 8 - 95 - 88 = 7 - 100 - 95 = 5 - 101 - 100 = 1 Die Differenzen... [mehr]
Ja, eine reelle Folge \((a_n)\) kann konvergieren, auch wenn sie nicht monoton wachsend ist. Eine Folge konvergiert, wenn sie sich einem bestimmten Grenzwert \(L\) annähert, unabhängig davon, ob sie in jedem Intervall monoton ist oder nicht. Ein klassisches Beispiel für eine nicht monotone, aber konvergente Folge ist die Folge \((a_n) = (-1)^n \cdot \frac{1}{n}\). Diese Folge wechselt zwischen positiven und negativen Werten, nähert sich jedoch mit zunehmendem \(n\) dem Grenzwert \(0\). Die Monotonie ist also keine notwendige Bedingung für die Konvergenz einer Folge.
Um die nächste Zahl in der Sequenz zu bestimmen, schauen wir uns die Differenzen zwischen den Zahlen an: - 80 - 76 = 4 - 88 - 80 = 8 - 95 - 88 = 7 - 100 - 95 = 5 - 101 - 100 = 1 Die Differenzen... [mehr]
Um die nächste Zahl in der Sequenz zu bestimmen, schauen wir uns die Differenzen zwischen den Zahlen an: - 80 - 76 = 4 - 88 - 80 = 8 - 95 - 88 = 7 - 100 - 95 = 5 - 101 - 100 = 1 Die Differenzen... [mehr]
Die Bedingung, dass die Partialsummen \( s_n = \sum_{k=1}^{n} a_k \) beschränkt sind, ist notwendig für die Konvergenz der Reihe \( \sum_{k=1}^{\infty} a_k \). Wenn die Reihe \( \sum_{k=1}... [mehr]
Um das größtmögliche \( R \geq 0 \) zu bestimmen, für das die Reihe \[ \sum_{k=1}^{\infty} \frac{x^k}{k^2} \] für alle \( x \in \mathbb{R} \) mit \( |x| < R \) absolut... [mehr]
Um das größtmögliche \( R \geq 0 \) zu bestimmen, für das die Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} x^{2k+4} \] für alle \( x \in \mathbb{R} \) mit \( |x| < R... [mehr]
Um den größtmöglichen Radius \( R \) zu bestimmen, für den die Reihe \[ \sum_{k=1}^{\infty} \frac{k!}{k^k} x^k \] für alle \( x \in \mathbb{R} \) mit \( |x| < R \) abso... [mehr]
Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k \cdot 2^k}{k!} \] zu bestimmen, können wir zunächst die absolute Konvergenz prüfen. Dazu betrachten wir die R... [mehr]
Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{2k-1} \] zu bestimmen, können wir den Leibniz-Kriterium für alternierende Reihen anwenden. Eine alternierende Rei... [mehr]
Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{(1/2)^k} \] zu untersuchen, können wir die Reihe umformen. Der Ausdruck \((1/2)^k\) kann als \(2^{-k}\) geschrieben we... [mehr]