Um den größtmöglichen Radius \( R \) zu bestimmen, für den die Reihe \[ \sum_{k=1}^{\infty} \frac{k!}{k^k} x^k \] für alle \( x \in \mathbb{R} \) mit \( |x| < R \) abso... [mehr]
Wenn \( (a_n) \) und \( (b_n) \) konvergente Folgen sind mit \( \lim_{n \to \infty} a_n = a \) und \( \lim_{n \to \infty} b_n = b \), dann gelten folgende Eigenschaften: 1. **Summe der Folgen**: \[ \lim_{n \to \infty} (a_n + b_n) = a + b \] 2. **Produkt der Folgen**: \[ \lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b \] 3. **Skalare Vielfache**: Für eine Konstante \( c \) gilt: \[ \lim_{n \to \infty} (c \cdot a_n) = c \cdot a \] 4. **Quotient der Folgen**: Wenn \( b \neq 0 \), dann gilt: \[ \lim_{n \to \infty} \left( \frac{a_n}{b_n} \right) = \frac{a}{b} \] Diese Eigenschaften sind grundlegende Ergebnisse der Analysis und zeigen, wie sich die Grenzwerte von konvergierenden Folgen verhalten.
Um den größtmöglichen Radius \( R \) zu bestimmen, für den die Reihe \[ \sum_{k=1}^{\infty} \frac{k!}{k^k} x^k \] für alle \( x \in \mathbb{R} \) mit \( |x| < R \) abso... [mehr]
Um zu zeigen, dass \( e^x \) schneller wächst als \( x^n \) für jedes feste \( n \), kann man die Regel von l'Hôpital verwenden. Hier ist der Schritt-für-Schritt-Ansatz: 1.... [mehr]
Um den Grenzwert von Exponentialfunktionen (e-Funktionen) zu bestimmen, kannst du folgende Schritte befolgen: 1. **Identifiziere die Funktion**: Bestimme die Funktion, deren Grenzwert du berechnen m&... [mehr]
Die Bedingung, dass die Partialsummen \( s_n = \sum_{k=1}^{n} a_k \) beschränkt sind, ist notwendig für die Konvergenz der Reihe \( \sum_{k=1}^{\infty} a_k \). Wenn die Reihe \( \sum_{k=1}... [mehr]
Um das größtmögliche \( R \geq 0 \) zu bestimmen, für das die Reihe \[ \sum_{k=1}^{\infty} \frac{x^k}{k^2} \] für alle \( x \in \mathbb{R} \) mit \( |x| < R \) absolut... [mehr]
Um das größtmögliche \( R \geq 0 \) zu bestimmen, für das die Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} x^{2k+4} \] für alle \( x \in \mathbb{R} \) mit \( |x| < R... [mehr]
Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k \cdot 2^k}{k!} \] zu bestimmen, können wir zunächst die absolute Konvergenz prüfen. Dazu betrachten wir die R... [mehr]
Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{2k-1} \] zu bestimmen, können wir den Leibniz-Kriterium für alternierende Reihen anwenden. Eine alternierende Rei... [mehr]
Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{(1/2)^k} \] zu untersuchen, können wir die Reihe umformen. Der Ausdruck \((1/2)^k\) kann als \(2^{-k}\) geschrieben we... [mehr]
Der Grenzwert von \(\frac{e^x}{x}\) für \(x\) gegen 0 ist nicht definiert, da der Ausdruck für \(x = 0\) nicht definiert ist (wir erhalten eine Division durch Null). Wenn du jedoch den Grenz... [mehr]