Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]
Die Funktion \( f(x) = \frac{e^x}{2} \) ist eine gerade Funktion. Eine Funktion ist gerade, wenn gilt: \( f(-x) = f(x) \) für alle \( x \). Für \( f(x) = \frac{e^x}{2} \) gilt: \[ f(-x) = \frac{e^{-x}}{2} = \frac{1}{2e^x} \] Da \( f(-x) \) nicht gleich \( f(x) \) ist, ist die Funktion nicht gerade. Zusammenfassend: \( \frac{e^x}{2} \) ist weder gerade noch ungerade.
Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]
Ja, die Funktion \( e^{-x^2} \) ist eine gerade Funktion. Eine Funktion \( f(x) \) ist gerade, wenn gilt: \( f(-x) = f(x) \) für alle \( x \) im Definitionsbereich der Funktion. Für \( f(x... [mehr]
Die Funktion \( e^x \) ist eine ungerade Funktion. Eine Funktion \( f(x) \) ist ungerade, wenn gilt: \( f(-x) = -f(x) \) für alle \( x \). Bei \( e^x \) gilt jedoch \( e^{-x} = \frac{1}{e^x} \),... [mehr]