Um 19 Prozent zu 2187 zu addieren, berechnest du zunächst 19 % von 2187: 2187 × 0,19 = 415,53 Dann addierst du diesen Wert zu 2187: 2187 + 415,53 = 2602,53 Das Ergebnis ist **2602,53**.
Um die Häufungspunkte der Folge \( a_n = \left(1 + \frac{(-1)^n}{n}\right)^n \) zu berechnen, kann man die Folge für gerade und ungerade \( n \) getrennt betrachten. 1. **Für gerade \( n \):** Wenn \( n \) gerade ist, dann ist \( (-1)^n = 1 \). Die Folge wird dann zu: \[ a_n = \left(1 + \frac{1}{n}\right)^n \] Es ist bekannt, dass: \[ \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e \] Daher konvergiert die Teilfolge \( a_{2k} \) (für gerade \( n \)) gegen \( e \). 2. **Für ungerade \( n \):** Wenn \( n \) ungerade ist, dann ist \( (-1)^n = -1 \). Die Folge wird dann zu: \[ a_n = \left(1 - \frac{1}{n}\right)^n \] Es ist bekannt, dass: \[ \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e} \] Daher konvergiert die Teilfolge \( a_{2k+1} \) (für ungerade \( n \)) gegen \( \frac{1}{e} \). Zusammengefasst hat die Folge \( a_n = \left(1 + \frac{(-1)^n}{n}\right)^n \) zwei Häufungspunkte: - \( e \) für die Teilfolge der geraden \( n \) - \( \frac{1}{e} \) für die Teilfolge der ungeraden \( n \)
Um 19 Prozent zu 2187 zu addieren, berechnest du zunächst 19 % von 2187: 2187 × 0,19 = 415,53 Dann addierst du diesen Wert zu 2187: 2187 + 415,53 = 2602,53 Das Ergebnis ist **2602,53**.
Um die zurückgelegte Strecke bei einer Geschwindigkeit von 208 km/h für 0,8 Sekunden zu berechnen, kannst du die Formel für die Strecke verwenden: \[ \text{Strecke} = \text{Geschwindig... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
Um die rationalen Zahlen \((-6,6)\) und \((+1,2)\) zu subtrahieren subtrahierst du die entsprechenden Werte: \[ (-6,6) - (+1,2) = (-6 - 1, 6 - 2) = (-7, 4) \] Das Ergebnis ist \((-7, 4)\).
Die Berechnung der rationalen Zahlen \((-40) - (+12)\) erfolgt wie folgt: \[ -40 - 12 = -40 + (-12) = -52 \] Das Ergebnis ist \(-52\).
Um die Fläche eines Rechtecks zu berechnen, multiplizierst du die Länge (l) mit der Breite (b). Die Formel lautet: \[ \text{Fläche} = l \times b \] Wenn du den Umfang berechnen mö... [mehr]
Um die Probe für \( a = 2 \) durchzuführen, setzen wir \( a \) in den Ausdruck \( (3a^3 + 4a^2)(-2a - a^5) \) ein. 1. Berechne zuerst \( 3a^3 + 4a^2 \): \[ 3(2^3) + 4(2^2) = 3(8) + 4(... [mehr]
3(2)^2 = 3 * 4 = 12.
Um den Radius eines Kreises zu berechnen, wenn du den Flächeninhalt (A) kennst, kannst du die Formel für den Flächeninhalt eines Kreises verwenden: \[ A = \pi r^2 \] Dabei ist \( r \)... [mehr]
Um die Nullstellen der Funktion \( f(x) = x^3 + 4x^2 + 3x \) zu berechnen, setzt man die Funktion gleich null: \[ x^3 + 4x^2 + 3x = 0 \] Zuerst kann man \( x \) ausklammern: \[ x(x^2 + 4x + 3) = 0... [mehr]