Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]
Um das größtmögliche \( R \geq 0 \) zu bestimmen, für das die Reihe \[ \sum_{k=1}^{\infty} \frac{x^k}{k^2} \] für alle \( x \in \mathbb{R} \) mit \( |x| < R \) absolut konvergiert, können wir den Wurzel- oder den Quotiententest verwenden. Hier verwenden wir den Quotiententest. Betrachten wir den allgemeinen Term der Reihe: \[ a_k = \frac{x^k}{k^2}. \] Wir berechnen den Quotienten \( \frac{a_{k+1}}{a_k} \): \[ \frac{a_{k+1}}{a_k} = \frac{\frac{x^{k+1}}{(k+1)^2}}{\frac{x^k}{k^2}} = \frac{x^{k+1} \cdot k^2}{x^k \cdot (k+1)^2} = \frac{x \cdot k^2}{(k+1)^2}. \] Für große \( k \) vereinfacht sich dieser Ausdruck zu: \[ \frac{a_{k+1}}{a_k} \approx \frac{x \cdot k^2}{k^2} = x. \] Der Quotiententest besagt, dass die Reihe konvergiert, wenn der Grenzwert des Quotienten kleiner als 1 ist: \[ |x| < 1. \] Das bedeutet, dass die Reihe für \( |x| < 1 \) absolut konvergiert. Daher ist das größtmögliche \( R \) gleich 1. Zusammenfassend ergibt sich: \[ R = 1.000. \]
Um die Brüche \( \frac{4}{15} \) und \( \frac{5}{8} \) zu multiplizieren, multiplizierst du Zähler mit Zähler und Nenner mit Nenner: \[ \frac{4}{15} \times \frac{5}{8} = \frac{4 \times... [mehr]
Das Winkeldritteln mit Zirkel und Lineal ist im Allgemeinen **nicht** mit endlich vielen Schritten möglich. Das ist ein klassisches Problem der antiken Geometrie, das 1837 von Pierre Wantzel bewi... [mehr]
Drei plus vier ergibt sieben.
Eine Differentialgleichung ist eine mathematische Gleichung, in der eine unbekannte Funktion und ihre Ableitungen vorkommen. Sie beschreibt, wie sich eine Größe (z. B. Temperatur, Geschwind... [mehr]
Zuerst wird der Ausdruck mit Klammern berechnet: 28 – (15 + 9) = 28 – 24 = 4Wenn du die Klammern weässt, bleibt der Ausdruck so stehen: 28 – 15 + 9 Nun rechnest du das oh... [mehr]
Die „1“ bei einer Rechnung der Wahrscheinlichkeit steht für die absolute Sicherheit, dass ein Ereignis eintritt. In der Wahrscheinlichkeitsrechnung werden Wahrscheinlichkeiten als Zah... [mehr]
Deine Frage ist unklar. Bitte stelle eine klare und präzise Frage.
Der Rechenausdruck lautet: (128 − 99) − (96 − 77) Berechnung: (128 − 99) = 29 (96 − 77) = 19 29 − 19 = 10 Das Ergebnis ist 10.
Eine spannende Idee für das Thema „Einführung in Funktionen“ ist, das Konzept anhand einer Alltagssituation zu erklären, zum Beispiel mit einem „Getränkeautomaten... [mehr]
Vektoren besitzen mehrere grundlegende Eigenschaften: 1. **Richtung und Betrag**: Ein Vektor ist durch seine Richtung und seinen Betrag (Länge) eindeutig bestimmt. 2. **Addition**: Zwei Vektore... [mehr]