Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{(1/2)^k} \] zu untersuchen, können wir die Reihe umformen. Der Ausdruck \((1/2)^k\) kann als \(2^{-k}\) geschrieben we... [mehr]
Um das größtmögliche \( R \geq 0 \) zu bestimmen, für das die Reihe \[ \sum_{k=1}^{\infty} \frac{x^k}{k^2} \] für alle \( x \in \mathbb{R} \) mit \( |x| < R \) absolut konvergiert, können wir den Wurzel- oder den Quotiententest verwenden. Hier verwenden wir den Quotiententest. Betrachten wir den allgemeinen Term der Reihe: \[ a_k = \frac{x^k}{k^2}. \] Wir berechnen den Quotienten \( \frac{a_{k+1}}{a_k} \): \[ \frac{a_{k+1}}{a_k} = \frac{\frac{x^{k+1}}{(k+1)^2}}{\frac{x^k}{k^2}} = \frac{x^{k+1} \cdot k^2}{x^k \cdot (k+1)^2} = \frac{x \cdot k^2}{(k+1)^2}. \] Für große \( k \) vereinfacht sich dieser Ausdruck zu: \[ \frac{a_{k+1}}{a_k} \approx \frac{x \cdot k^2}{k^2} = x. \] Der Quotiententest besagt, dass die Reihe konvergiert, wenn der Grenzwert des Quotienten kleiner als 1 ist: \[ |x| < 1. \] Das bedeutet, dass die Reihe für \( |x| < 1 \) absolut konvergiert. Daher ist das größtmögliche \( R \) gleich 1. Zusammenfassend ergibt sich: \[ R = 1.000. \]
Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{(1/2)^k} \] zu untersuchen, können wir die Reihe umformen. Der Ausdruck \((1/2)^k\) kann als \(2^{-k}\) geschrieben we... [mehr]
Die Bedingung, dass die Partialsummen \( s_n = \sum_{k=1}^{n} a_k \) beschränkt sind, ist notwendig für die Konvergenz der Reihe \( \sum_{k=1}^{\infty} a_k \). Wenn die Reihe \( \sum_{k=1}... [mehr]
Um das größtmögliche \( R \geq 0 \) zu bestimmen, für das die Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} x^{2k+4} \] für alle \( x \in \mathbb{R} \) mit \( |x| < R... [mehr]
Um den größtmöglichen Radius \( R \) zu bestimmen, für den die Reihe \[ \sum_{k=1}^{\infty} \frac{k!}{k^k} x^k \] für alle \( x \in \mathbb{R} \) mit \( |x| < R \) abso... [mehr]
Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k \cdot 2^k}{k!} \] zu bestimmen, können wir zunächst die absolute Konvergenz prüfen. Dazu betrachten wir die R... [mehr]
Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{2k-1} \] zu bestimmen, können wir den Leibniz-Kriterium für alternierende Reihen anwenden. Eine alternierende Rei... [mehr]
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]