Wie bestimme ich den Grenzwert mit der Formel für die geometrische Reihe?

Antwort

Der Grenzwert einer geometrischen Reihe kann mit der Formel für die Summe einer unendlichen geometrischen Reihe bestimmt werden. Eine geometrische Reihe hat die Form: \[ S = a + ar + ar^2 + ar^3 + \ldots \] Hierbei ist \( a \) der erste Term und \( r \) der gemeinsame Faktor (der Quotient zwischen aufeinanderfolgenden Termen). Die Summe \( S \) einer unendlichen geometrischen Reihe konvergiert, wenn der Betrag des gemeinsamen Faktors \( r \) kleiner als 1 ist (\( |r| < 1 \)). In diesem Fall gilt: \[ S = \frac{a}{1 - r} \] Wenn \( |r| \geq 1 \), divergiert die Reihe und hat keinen Grenzwert. Zusammenfassend: Um den Grenzwert einer geometrischen Reihe zu bestimmen, überprüfe, ob \( |r| < 1 \) ist, und verwende dann die Formel \( S = \frac{a}{1 - r} \).

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Bestimme das größtmögliche R≥0, dass die Reihe ∑ (von k=1 bis ∞) (k!)/(k^k) * x^k für alle x∈R mit |x|<R absolut konvergiert. Ergebnis auf drei Nachkommastellen?

Um den größtmöglichen Radius \( R \) zu bestimmen, für den die Reihe \[ \sum_{k=1}^{\infty} \frac{k!}{k^k} x^k \] für alle \( x \in \mathbb{R} \) mit \( |x| < R \) abso... [mehr]

Wie kann man mit l'Hospital begründen, dass e^x schneller wächst als x^n?

Um zu zeigen, dass \( e^x \) schneller wächst als \( x^n \) für jedes feste \( n \), kann man die Regel von l'Hôpital verwenden. Hier ist der Schritt-für-Schritt-Ansatz: 1.... [mehr]

Wie bestimme ich den Grenzwert von e-Funktionen?

Um den Grenzwert von Exponentialfunktionen (e-Funktionen) zu bestimmen, kannst du folgende Schritte befolgen: 1. **Identifiziere die Funktion**: Bestimme die Funktion, deren Grenzwert du berechnen m&... [mehr]

Ist die Beschränktheit der Partialsummen s_n = ∑(von k=1 bis n) a_k notwendig, hinreichend oder keines für die Konvergenz der Reihe ∑(von k=1 bis ∞) a_k?

Die Bedingung, dass die Partialsummen \( s_n = \sum_{k=1}^{n} a_k \) beschränkt sind, ist notwendig für die Konvergenz der Reihe \( \sum_{k=1}^{\infty} a_k \). Wenn die Reihe \( \sum_{k=1}... [mehr]

Bestimme das größtmögliche R≥0 für die absolute Konvergenz der Reihe ∑ (von k=1 bis ∞) (x^k)/k² mit |x|<R.

Um das größtmögliche \( R \geq 0 \) zu bestimmen, für das die Reihe \[ \sum_{k=1}^{\infty} \frac{x^k}{k^2} \] für alle \( x \in \mathbb{R} \) mit \( |x| < R \) absolut... [mehr]

Bestimme das größtmögliche R≥0, dass die Reihe ∑ ((-1)^k)/(k²) *x^(2k+4) für |x|<R absolut konvergiert.

Um das größtmögliche \( R \geq 0 \) zu bestimmen, für das die Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} x^{2k+4} \] für alle \( x \in \mathbb{R} \) mit \( |x| < R... [mehr]

Wie ist das Konvergenzverhalten der Reihe ∑ (von k=1 bis ∞) ((−1)^k)* (2^k)/(k!)?

Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k \cdot 2^k}{k!} \] zu bestimmen, können wir zunächst die absolute Konvergenz prüfen. Dazu betrachten wir die R... [mehr]

Entscheide das Konvergenzverhalten der Reihe ∑ (von k=1 bis ∞) (((−1)^k)/(2k-1)).

Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{2k-1} \] zu bestimmen, können wir den Leibniz-Kriterium für alternierende Reihen anwenden. Eine alternierende Rei... [mehr]

Entscheide das Konvergenzverhalten der Reihe ∑ (von k=1 bis ∞) (((−1)^k)/((1/2)^k)).

Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{(1/2)^k} \] zu untersuchen, können wir die Reihe umformen. Der Ausdruck \((1/2)^k\) kann als \(2^{-k}\) geschrieben we... [mehr]

Was ist der Grenzwert von e^x/x?

Der Grenzwert von \(\frac{e^x}{x}\) für \(x\) gegen 0 ist nicht definiert, da der Ausdruck für \(x = 0\) nicht definiert ist (wir erhalten eine Division durch Null). Wenn du jedoch den Grenz... [mehr]