Gibt es Permutationen mit verschiedenen Variablen und Wiederholungen?

Antwort

Ja, es gibt Permutationen mit verschiedenen Variablen und Wiederholungen. Wenn du eine Menge von Elementen hast, bei denen einige Elemente identisch sind, kannst du die Anzahl der verschiedenen Permutationen mit der Formel für Permutationen mit Wiederholungen berechnen. Die allgemeine Formel lautet: \[ \frac{n!}{n_1! \cdot n_2! \cdot \ldots \cdot n_k!} \] Hierbei ist \(n\) die Gesamtanzahl der Elemente, und \(n_1, n_2, \ldots, n_k\) sind die Häufigkeiten der identischen Elemente. Beispiel: Wenn du die Buchstaben A, A, B, C permutieren möchtest, wäre die Anzahl der verschiedenen Permutationen: \[ \frac{4!}{2! \cdot 1! \cdot 1!} = \frac{24}{2} = 12 \] Das bedeutet, es gibt 12 verschiedene Permutationen dieser Buchstabenkombination.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Auf wie viele Arten können 6 CDs im Regal angeordnet werden?

Die 6 CDs können auf **720 verschiedene Arten** im Regal angeordnet werden. Das ergibt sich aus der Anzahl der Permutationen von 6 verschiedenen Objekten, also \( 6! \) (6 Fakultät): \( 6!... [mehr]

Was bedeutet permutationsinvariante Aggregation?

Eine permutationsinvariante Aggregation ist ein Begriff aus der Mathematik und dem maschinellen Lernen, insbesondere im Zusammenhang mit der Verarbeitung von Mengen (englisch: "sets"). Sie b... [mehr]

Wie hängt das Produkt n*(n-1)*(n-2)*...*(n-k+1) mit n! zusammen?

Der Ausdruck \( n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1) \) ist das sogenannte **absteigende Produkt** von \( n \) mit \( k \) Faktoren. Es wird auch als **Fakultätsbruch** oder **fal... [mehr]

15x - (9x + 7) + (6 - 2x) - (5x + 3) - xy

Um den Ausdruck \( 15x - (9x + 7) + (6 - 2x) - (5x + 3) - xy \) zu vereinfachen, folge diesen Schritten: 1. Entferne die Klammern: \[ 15x - 9x - 7 + 6 - 2x - 5x - 3 - xy \] 2. Fasse die \(... [mehr]

15x - (9x + 7) + (6 - 2x) • (5x + 3) - xy?

Um den Ausdruck \( 15 \times -(9x + 7) + (6 - 2x) \cdot (5x + 3) - xy \) zu vereinfachen, gehen wir Schritt für Schritt vor. 1. **Erster Teil**: \( 15 \times -(9x + 7) \) \[ = -15 \times 9... [mehr]

3x + 8 + 6x - 3 = 32?

Um die Gleichung \(3x + 8 + 6x - 3 = 32\) zu lösen, folge diesen Schritten: 1. Fasse die \(x\)-Terme und die konstanten Terme zusammen: \[ (3x + 6x) + (8 - 3) = 32 \] Das vereinfacht... [mehr]

Führe die Probe für a=2 in der Gleichung (3a^2 + 4a^2) * (-2a - a^5) durch.

Um die Probe für \( a = 2 \) in den Ausdruck \( (3a^2 + 4a^2)(-2a - a^5) \) durchzuführen, folge diesen Schritten: 1. Setze \( a = 2 \) in den Ausdruck ein: \[ (3(2)^2 + 4(2)^2)(-2(2)... [mehr]

Oder mit a(a+b) - (a^2 + b)(a - b)?

Um den Ausdruck \( a(a+b) - (a^2+b)(a-b) \) zu vereinfachen, gehen wir Schritt für Schritt vor. 1. Zuerst multiplizieren wir die Terme aus: \[ a(a+b) = a^2 + ab \] \[ (a^2 + b)(a... [mehr]