Die Fachtermini der grundlegenden Rechenoperationen lauten wie folgt: 1. **Addition** (Plus-Rechnen): - Fachbegriff: Addition - Operanden: Summand + Summand = Summe 2. **Subtraktion** (Min... [mehr]
Um den Ausdruck \(-v^2w - w^2v \cdot 3(12wv^2 - 2v^2w) - w^2v\) zusammenzufassen, gehen wir Schritt für Schritt vor. 1. Zuerst multiplizieren wir den zweiten Teil aus: \[ -w^2v \cdot 3(12wv^2 - 2v^2w) = -w^2v \cdot (36wv^2 - 6v^2w) = -36w^3v^3 + 6w^3v^3 = -30w^3v^3 \] 2. Jetzt setzen wir alles zusammen: \[ -v^2w - 30w^3v^3 - w^2v \] 3. Wir fassen die ähnlichen Terme zusammen: \[ -v^2w - w^2v - 30w^3v^3 \] Das Ergebnis ist: \[ -v^2w - w^2v - 30w^3v^3 \]
Die Fachtermini der grundlegenden Rechenoperationen lauten wie folgt: 1. **Addition** (Plus-Rechnen): - Fachbegriff: Addition - Operanden: Summand + Summand = Summe 2. **Subtraktion** (Min... [mehr]
Um den Ausdruck \( 15x - (9x + 7) + (6 - 2x) - (5x + 3) - xy \) zu vereinfachen, folge diesen Schritten: 1. Entferne die Klammern: \[ 15x - 9x - 7 + 6 - 2x - 5x - 3 - xy \] 2. Fasse die \(... [mehr]
Um den Ausdruck \( 15 \times -(9x + 7) + (6 - 2x) \cdot (5x + 3) - xy \) zu vereinfachen, gehen wir Schritt für Schritt vor. 1. **Erster Teil**: \( 15 \times -(9x + 7) \) \[ = -15 \times 9... [mehr]
Um die Gleichung \(3x + 8 + 6x - 3 = 32\) zu lösen, folge diesen Schritten: 1. Fasse die \(x\)-Terme und die konstanten Terme zusammen: \[ (3x + 6x) + (8 - 3) = 32 \] Das vereinfacht... [mehr]
Um die Probe für \( a = 2 \) in den Ausdruck \( (3a^2 + 4a^2)(-2a - a^5) \) durchzuführen, folge diesen Schritten: 1. Setze \( a = 2 \) in den Ausdruck ein: \[ (3(2)^2 + 4(2)^2)(-2(2)... [mehr]
Um den Ausdruck \( a(a+b) - (a^2+b)(a-b) \) zu vereinfachen, gehen wir Schritt für Schritt vor. 1. Zuerst multiplizieren wir die Terme aus: \[ a(a+b) = a^2 + ab \] \[ (a^2 + b)(a... [mehr]
Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Bitte stelle eine klare und präzise Frage.
Um den Ausdruck \((-2+x)^2\) zu vereinfachen, kannst du die binomische Formel anwenden. Die Formel für das Quadrat eines Binoms lautet: \[ (a + b)^2 = a^2 + 2ab + b^2 \] In deinem Fall ist \(a... [mehr]