Um die gemeinsamen Faktoren aus dem Ausdruck \(2x^2 + 4xy + 6xz\) auszuklammern, kannst du zunächst den größten gemeinsamen Faktor (Ggf) der Koeffizienten und der Variablen bestimmen.... [mehr]
Um die gemeinsamen Faktoren aus dem Ausdruck \( 14ab^2 - 7a^2b - 21ab \) auszuklammern, identifizieren wir zunächst die gemeinsamen Faktoren in jedem Term. Die Terme sind: 1. \( 14ab^2 \) 2. \( -7a^2b \) 3. \( -21ab \) Der größte gemeinsame Faktor (Ggf) der Koeffizienten \( 14, -7, -21 \) ist \( 7 \). Außerdem ist \( ab \) ein gemeinsamer Faktor in allen drei Termen. Daher können wir \( 7ab \) als gemeinsamen Faktor ausklammern: \[ 14ab^2 - 7a^2b - 21ab = 7ab(2b - a - 3) \] Das Ergebnis ist also: \[ 7ab(2b - a - 3) \]
Um die gemeinsamen Faktoren aus dem Ausdruck \(2x^2 + 4xy + 6xz\) auszuklammern, kannst du zunächst den größten gemeinsamen Faktor (Ggf) der Koeffizienten und der Variablen bestimmen.... [mehr]
Um die Gleichung \(-14x - 7\) nach gemeinsamen Faktoren auszuklammern, kannst du den größten gemeinsamen Faktor (Ggf) der beiden Terme finden. In diesem Fall ist der Ggf \(-7\). Du kannst... [mehr]
Um den Ausdruck \(13a - 13b\) zu vereinfachen, kannst den gemeinsamen Faktor \(13\) ausklammern. Das sieht dann so aus: \[ 13a - 13b = 13(a - b) \] Der vereinfachte Ausdruck ist also \(13(a - b)\)... [mehr]
Um den Ausdruck \((5y-1)(5y+1)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ a^2 - b^2 = (a-b)(a+b) \] In diesem Fall ist \(a = 5y\) und \(... [mehr]
Um den Ausdruck \((3x+2)(3x-2)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die besagt, dass \((a+b)(a-b) = a^2 - b^2\). Hier ist \(a = 3x\) und \(b = 2\).... [mehr]
Um die Terme \(xy - zy\) zu faktorisieren, kannst du den gemeinsamen Faktor \(y\) ausklammern. Das sieht dann so aus: \[ xy - zy = y(x - z) \] Somit ist die faktorisierte Form \(y(x - z)\).
Um die Probe für \( a = 2 \) durchzuführen, setzen wir \( a \) in den Ausdruck \( (3a^3 + 4a^2)(-2a - a^5) \) ein. 1. Berechne zuerst \( 3a^3 + 4a^2 \): \[ 3(2^3) + 4(2^2) = 3(8) + 4(... [mehr]
Beim Ausklammern handelt es sich um eine algebraische, um einen gemeinsamen Faktor aus einem Ausdruck zu entfernen. Hier sind die Schritte, um Ausklammern durch: 1. **ifiziere den gemeinsamen Faktor*... [mehr]
Um den Ausdruck \((1,2-d) \cdot (1,2+d)\) zu vereinfachen, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ a^2 - b^2 = (a-b)(a+b) \] In diesem Fall ist \(a = 1,2\)... [mehr]
Um den Ausdruck \(36c^2 + 6c\) herauszuheben, kannst du den größten gemeinsamen Faktor (Ggf) bestimmen. In diesem Fall ist der Ggf \(6c\). Du kannst den wie folgt umformen: \[ 36c^2 + 6c... [mehr]