Was sind die durch 4 teilbaren Zahlen, die größer als 100 sind?

Antwort

Die durch 4 teilbaren Zahlen, die größer als 100 sind, beginnen mit 104 und setzen sich in Schritten von 4 fort. Die ersten fünf Zahlen in dieser Reihe sind: 1. 104 2. 108 3. 112 4. 116 5. 120 Diese Reihe setzt sich unendlich fort, indem du jeweils 4 zur vorherigen Zahl addierst. Generell kann jede durch 4 teilbare Zahl, die größer als 100 ist, in der Form \( n = 4k \) dargestellt werden, wobei \( k \) eine ganze Zahl ist, die so gewählt wird, dass \( n > 100 \).

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie viel ist 3 plus 4?

Drei plus vier ergibt sieben.

Zahlen bis 10000 zerlegen: 5816, 1495, 7238, 4187, 9251, 9948, 6717, 2864.

Hier sind die Zerlegungen der Zahlen in Tausender, Hunderter, Zehner und Einer: a) 5816 = 5000 + 800 + 10 + 6 1495 = 1000 + 400 + 90 + 5 7238 = 7000 + 200 + 30 + 8 4187 = 4000 + 100 + 80 + 7... [mehr]

Was ist das Ergebnis von 1 plus 293492841?

1 plus 293492841 ergibt 293492842.

Gemeinsamer Teiler von 445 und 1000?

Der größte gemeinsame Teiler (ggT) von 445 und 1000 ist 5.

Was ist 27000 geteilt durch 1100?

27.000 geteilt durch 1.100 ergibt 24,545454545... oder gerundet 24,55.

Was ist 5/7 + 6 + 7?

Um die Rechnung \( \frac{5}{7} + 6 + 7 \) durchzuführen, addiere zuerst die ganzen Zahlen: \( 6 + 7 = 13 \). Dann addiere \( \frac{5}{7} \) zu \( 13 \): \( 13 + \frac{5}{7} = \frac{13 \cdot 7}... [mehr]

Was ist der Überschlag von 13489?

Der Überschlag von 13489 bezieht sich in der Regel auf eine grobe Schätzung oder Rundung der Zahl. Wenn du 13489 auf die nächste Tausend runden möchtest, wäre der Übersch... [mehr]

Was ist der Überschlag von 4784?

Der Überschlag von 4784 bezieht sich in der Regel auf eine grobe Schätzung oder Rundung. Wenn du den Wert auf die nächste Tausend runden möchtest, wäre der Überschlag 500... [mehr]

Was sind Aufgaben zum Anordnen rationaler Zahlen?

Hier sind drei Aufgaben zum Thema "Rationale Zahlen anordnen": 1. Ordne die folgenden rationalen Zahlen der Größe nach: \( \frac{3}{4}, -\frac{1}{2}, 0, \frac{2}{3}, -\frac{3}{4}... [mehr]