Die Zahl 20 kann als Bruch geschrieben werden, indem du sie als Zähler und 1 als Nenner verwendest: \[ 20 = \frac{20}{1} \] Das ist die Darstellung von 20 als Bruch.
Der Term für das dreifache des Quadrates einer Zahl \( x \) lautet: \( 3x^2 \).
Die Zahl 20 kann als Bruch geschrieben werden, indem du sie als Zähler und 1 als Nenner verwendest: \[ 20 = \frac{20}{1} \] Das ist die Darstellung von 20 als Bruch.
Deine Frage ist unklar. Bitte stelle eine klare und präzise Frage.
Bezeichnen wir die dreistellige Zahl als \( abc \), wobei \( a, b, c \) die Ziffern sind (und \( a \neq 0 \)). Die Zahl selbst ist dann: \( 100a + 10b + c \) Die Quersumme ist: \( a + b + c = 1... [mehr]
Gegeben: - Fläche des Schildes: \( A_{\text{Schild}} = 3600\,\text{cm}^2 \) - Das gelbe Quadrat ist halb so lang wie das Schild (gemeint ist: die Seitenlänge des Quadrats ist halb so gro&sz... [mehr]
Der Ausdruck \((A^2 + b^2)^2\) kann mit der binomischen Formel entwickelt werden. Die Formel lautet: \[ (x + y)^2 = x^2 + 2xy + y^2 \] In deinem Fall ist \(x = A^2\) und \(y = b^2\). Daher ergibt si... [mehr]
Der Ausdruck \((9a + 15b)^2\) kann mit der binomischen Formel \((x + y)^2 = x^2 + 2xy + y^2\) erweitert werden. Hier ist \(x = 9a\) und \(y = 15b\). Die Berechnung erfolgt wie folgt: \[ (9a + 15b... [mehr]
Um den Ausdruck \((7a - 1)^2\) zu quadrieren, kannst du die Formel für das Quadrat eines Binoms verwenden: \((x - y)^2 = x^2 - 2xy + y^2\). Hier ist \(x = 7a\) und \(y = 1\). Also: \[ (7a - 1... [mehr]
Die Formel für das Quadrat eines Binoms lautet \((a + b)^2 = a^2 + 2ab + b^2\). Für \((A + 5)^2\) ergibt sich: \[ (A + 5)^2 = A^2 + 2 \cdot A \cdot 5 + 5^2 \] Das vereinfacht sich zu: \... [mehr]