Konvergiert jede beschränkt monoton wachsende Folge?

Antwort

Ja, jede beschränkt monoton wachsende Folge konvergiert. Dies ist ein Ergebnis aus der Analysis, das als Satz von der Monotonie und Beschränktheit bekannt ist. Wenn eine Folge \( (a_n) \) monoton wachsend (d.h. \( a_n \leq a_{n+1} \) für alle \( n \)) und nach oben beschränkt ist, dann existiert ein Grenzwert \( L \), gegen den die Folge konvergiert. Dieser Grenzwert \( L \) ist das Supremum der Folge.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Welche Zahl kommt als Nächste: 76, 80, 88, 95, 100, 101?

Um die nächste Zahl in der Sequenz zu bestimmen, schauen wir uns die Differenzen zwischen den Zahlen an: - 80 - 76 = 4 - 88 - 80 = 8 - 95 - 88 = 7 - 100 - 95 = 5 - 101 - 100 = 1 Die Differenzen... [mehr]

Welche Zahl folgt: 76, 80, 88, 95, 100, 101?

Um die nächste Zahl in der Sequenz zu bestimmen, schauen wir uns die Differenzen zwischen den Zahlen an: - 80 - 76 = 4 - 88 - 80 = 8 - 95 - 88 = 7 - 100 - 95 = 5 - 101 - 100 = 1 Die Differenzen... [mehr]

Ist die Beschränktheit der Partialsummen s_n = ∑(von k=1 bis n) a_k notwendig, hinreichend oder keines für die Konvergenz der Reihe ∑(von k=1 bis ∞) a_k?

Die Bedingung, dass die Partialsummen \( s_n = \sum_{k=1}^{n} a_k \) beschränkt sind, ist notwendig für die Konvergenz der Reihe \( \sum_{k=1}^{\infty} a_k \). Wenn die Reihe \( \sum_{k=1}... [mehr]

Bestimme das größtmögliche R≥0 für die absolute Konvergenz der Reihe ∑ (von k=1 bis ∞) (x^k)/k² mit |x|<R.

Um das größtmögliche \( R \geq 0 \) zu bestimmen, für das die Reihe \[ \sum_{k=1}^{\infty} \frac{x^k}{k^2} \] für alle \( x \in \mathbb{R} \) mit \( |x| < R \) absolut... [mehr]

Bestimme das größtmögliche R≥0, dass die Reihe ∑ ((-1)^k)/(k²) *x^(2k+4) für |x|<R absolut konvergiert.

Um das größtmögliche \( R \geq 0 \) zu bestimmen, für das die Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} x^{2k+4} \] für alle \( x \in \mathbb{R} \) mit \( |x| < R... [mehr]

Bestimme das größtmögliche R≥0, dass die Reihe ∑ (von k=1 bis ∞) (k!)/(k^k) * x^k für alle x∈R mit |x|<R absolut konvergiert. Ergebnis auf drei Nachkommastellen?

Um den größtmöglichen Radius \( R \) zu bestimmen, für den die Reihe \[ \sum_{k=1}^{\infty} \frac{k!}{k^k} x^k \] für alle \( x \in \mathbb{R} \) mit \( |x| < R \) abso... [mehr]

Wie ist das Konvergenzverhalten der Reihe ∑ (von k=1 bis ∞) ((−1)^k)* (2^k)/(k!)?

Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k \cdot 2^k}{k!} \] zu bestimmen, können wir zunächst die absolute Konvergenz prüfen. Dazu betrachten wir die R... [mehr]

Entscheide das Konvergenzverhalten der Reihe ∑ (von k=1 bis ∞) (((−1)^k)/(2k-1)).

Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{2k-1} \] zu bestimmen, können wir den Leibniz-Kriterium für alternierende Reihen anwenden. Eine alternierende Rei... [mehr]

Entscheide das Konvergenzverhalten der Reihe ∑ (von k=1 bis ∞) (((−1)^k)/((1/2)^k)).

Um das Konvergenzverhalten der Reihe \[ \sum_{k=1}^{\infty} \frac{(-1)^k}{(1/2)^k} \] zu untersuchen, können wir die Reihe umformen. Der Ausdruck \((1/2)^k\) kann als \(2^{-k}\) geschrieben we... [mehr]