In der Kombinatorik bedeutet „mit Berücksichtigung der Reihenfolge“, dass die Anordnung der ausgewählten Elemente eine Rolle spielt. Das heißt: Verschiedene Reihenfolgen de... [mehr]
Die Anzahl der Möglichkeiten, 10 verschiedene Sachen anzuordnen, wird durch die Fakultät von 10 (10!) berechnet. Die Fakultät von 10 ist das Produkt aller positiven ganzen Zahlen bis 10: \[ 10! = 10 \times 9 \times 8 \times 7 \times 6 \times5 \times \times 3times 2times 1 \Das ergibt: \[ 10! = 3.628.800 \] Es gibt also 3.628.800 verschiedene Möglichkeiten, 10 Sachen anzuordnen.
In der Kombinatorik bedeutet „mit Berücksichtigung der Reihenfolge“, dass die Anordnung der ausgewählten Elemente eine Rolle spielt. Das heißt: Verschiedene Reihenfolgen de... [mehr]
Die 4 Buben können auf **1 Spieler** nur auf **eine einzige Art** verteilt werden: Alle 4 Buben gehen an diesen einen Spieler. **Begründung:** Da es nur einen Spieler gibt, bekommt dieser... [mehr]
Die 6 CDs können auf **720 verschiedene Arten** im Regal angeordnet werden. Das ergibt sich aus der Anzahl der Permutationen von 6 verschiedenen Objekten, also \( 6! \) (6 Fakultät): \( 6!... [mehr]