3(2)^2 = 3 * 4 = 12.
Um vor dem Ausrechnen zu kürzen, bezieht man sich in der Regel auf Brüche. Hier sind die Schritte, die du befolgen kannst: 1. **Finde den größten gemeinsamen Teiler (ggT)**: Bestimme den ggT der Zähler- und Nennerzahlen. 2. **Teile Zähler und Nenner durch den ggT**: Dividiere sowohl den Zähler als auch den Nenner durch den ggT, um den Bruch zu vereinfachen. Beispiel: Bei dem Bruch 8/12 ist der ggT 4. Wenn du 8 und 12 durch 4 teilst, erhältst du 2/3. Das Kürzen hilft, die Berechnungen zu vereinfachen und das Ergebnis klarer darzustellen.
3(2)^2 = 3 * 4 = 12.
10% von 12 ist 1,2.
Um einen Wert zu berechnen, musst du zunächst wissen, um welchen Wert es sich handelt und welche Informationen oder Daten du dafür benötigst. Hier sind einige allgemeine Schritte, die d... [mehr]
Um die zurückgelegte Strecke bei einer Geschwindigkeit von 208 km/h für 0,8 Sekunden zu berechnen, kannst du die Formel für die Strecke verwenden: \[ \text{Strecke} = \text{Geschwindig... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Um die Brüche 5/18 und 1/18 zu addieren, addierst du die Zähler und behältst den Nenner bei: 5/18 + 1/18 = (5 + 1) / 18 = 6/18. kannst du den Bruch 6/18 kürzen. Der grö&szl... [mehr]
Um die Brüche zu subtrahieren, bringe sie auf einen gemeinsamen Nenner. In diesem Fall ist der Nenner bereits gleich (14): \[ \frac{9}{14} - \frac{2}{14} = \frac{9 - 2}{14} = \frac{7}{14} \] Je... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]