Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Die gegebene quadratische Funktion ist \( y = x^2 - 6x - 1 \). Um mehr über diese Funktion zu erfahren, können wir verschiedene Aspekte untersuchen, wie den Scheitelpunkt, die Nullstellen und die allgemeine Form. 1. **Scheitelpunkt**: Der Scheitelpunkt einer Parabel in der Form \( y = ax^2 + bx + c \) kann mit der Formel \( x_s = -\frac{b}{2a} \) gefunden werden. Hier ist \( a = 1 \) und \( b = -6 \). \[ x_s = -\frac{-6}{2 \cdot 1} = \frac{6}{2} = 3 \] Um den y-Wert des Scheitelpunkts zu finden, setzen wir \( x_s \) in die Funktion ein: \[ y_s = (3)^2 - 6 \cdot 3 - 1 = 9 - 18 - 1 = -10 \] Der Scheitelpunkt ist also \( (3, -10) \). 2. **Nullstellen**: Um die Nullstellen zu finden, setzen wir \( y = 0 \): \[ 0 = x^2 - 6x - 1 \] Wir verwenden die Mitternachtsformel: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{6 \pm \sqrt{36 + 4}}{2} = \frac{6 \pm \sqrt{40}}{2} = \frac{6 \pm 2\sqrt{10}}{2} = 3 \pm \sqrt{10} \] Die Nullstellen sind also \( x_1 = 3 + \sqrt{10} \) und \( x_2 = 3 - \sqrt{10} \). 3. **Allgemeine Form**: Die Funktion ist bereits in der allgemeinen Form \( y = ax^2 + bx + c \) mit \( a = 1 \), \( b = -6 \) und \( c = -1 \). Zusammenfassend ist die quadratische Funktion \( y = x^2 - 6x - 1 \) eine nach oben geöffnete Parabel mit einem Scheitelpunkt bei \( (3, -10) \) und zwei Nullstellen bei \( 3 + \sqrt{10} \) und \( 3 - \sqrt{10} \).
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
7x² ist ein algebraischer Ausdruck, der bedeutet, dass die Variable x mit sich selbst multipliziert und dann mit 7 multipliziert wird. Es handelt sich um eine quadratische Funktion in Bezug auf x... [mehr]
Nein, die Riemannsche Vermutung ist bislang nicht bewiesen. Sie gehört zu den berühmtesten ungelösten Problemen der Mathematik. Die Vermutung wurde 1859 von Bernhard Riemann formuliert... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]