Wie ist die Oberfläche einer Kugel, wenn das Volumen 250 ml beträgt und der Radius 3,91 cm ist?

Antwort

Um die Oberfläche einer Kugel zu berechnen, wird die Formel \( A = 4 \pi r^2 \) verwendet, wobei \( r \) der Radius der Kugel ist. Gegeben: - Radius \( r = 3,91 \) cm Die Oberfläche \( A \) berechnet sich wie folgt: \[ A = 4 \pi (3,91)^2 \] \[ A = 4 \pi (15,2881) \] \[ A \approx 4 \times 3,14159 \times 15,2881 \] \[ A \approx 192,388 \, \text{cm}^2 \] Die Oberfläche der Kugel beträgt also ungefähr 192,39 cm². Das Volumen von 250 ml (oder 250 cm³) ist hier nicht relevant für die Berechnung der Oberfläche, da der Radius bereits gegeben ist.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Kugelvolumen mit Radius 1mm berechnen?

Das Volumen einer Kugel wird mit der Formel \( V = \frac{4}{3} \pi r^3 \) berechnet, wobei \( r \) der Radius der Kugel ist. Für einen Radius von 1 mm (0,1 cm) lautet die Berechnung: \[ V = \f... [mehr]

Formel nach h umstellen: V=1/3 a²xh.

Um die Formel \( V = \frac{1}{3} a^2 \cdot h \) nach \( h \) umzustellen, folge diesen Schritten: 1. Multipliziere beide Seiten der Gleichung mit 3, um den Bruch zu eliminieren: \[ 3V = a^2 \cd... [mehr]

Umforme die Formel V=1/3 a²xh nach h.

Um die Formel \( V = \frac{1}{3} a^2 h \) nach \( h \) umzustellen, folge diesen Schritten: 1. Multipliziere beide Seiten der Gleichung mit 3: \[ 3V = a^2 h \] 2. Teile beide Seiten durch \... [mehr]

Oberfläche einer sechseckigen Pyramide berechnen?

Um die Oberfläche einer sechseckigen Pyramide zu berechnen, benötigst du die Grundfläche und die Flächen der seitlichen Dreiecke. Hier sind die Schritte zur Berechnung: 1. **Berec... [mehr]