Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Ja, das Volumen eines Kegels vervierfacht sich, wenn der Radius des Grundkreises verdoppelt wird und die Höhe beibehalten wird. Das Volumen \( V \) eines Kegels wird durch die Formel \( V = \frac{1}{3} \pi r^2 h \) berechnet, wobei \( r \) der Radius des Grundkreises und \( h \) die Höhe des Kegels ist. Wenn der Radius \( r \) verdoppelt wird (also \( r \) durch \( 2r \) ersetzt wird), wird die neue Volumenformel: \[ V' = \frac{1}{3} \pi (2r)^2 h = \frac{1}{3} \pi 4r^2 h = 4 \left( \frac{1}{3} \pi r^2 h \right) = 4V \] Das bedeutet, das neue Volumen \( V' \) ist viermal so groß wie das ursprüngliche Volumen \( V \).
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]
Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]
Wenn dir der Winkel \(\alpha\) (in Grad oder Bogenmaß) und der Flächeninhalt \(A_a\) eines Kreissektors gegeben sind, kannst du den Radius \(r\) mit folgender Formel berechnen: **Formel:**... [mehr]
Um die Höhe des Sands in der Sandkiste zu berechnen, nutzt du die Formel für das Volumen eines Quaders: **Volumen = Grundfläche × Höhe** Gegeben: - Grundfläche: 4 m &t... [mehr]
Der Radius ist der Abstand vom Mittelpunkt eines Kreises bis zum Rand. Der Durchmesser ist die Strecke, die den Kreis durch den Mittelpunkt von einer Seite zur anderen verbindet. Der Durchmesser i... [mehr]
Der Radius von 5 Metern bedeutet, dass der Abstand vom Mittelpunkt eines Kreises (oder einer Kugel) bis zum Rand (Umfang bzw. zur Oberfläche) genau 5 Meter beträgt. Der Radius ist also die g... [mehr]
Um das Fassungsvermögen (Volumen) eines rechteckigen Gefäßes zu berechnen, multiplizierst du Länge, Breite und Höhe: 80 cm × 30 cm × 40 cm = 96 000 cm³ Um... [mehr]