Was passiert mit einem Volumen, wenn man die Höhe eines Zylinders halbiert?

Antwort

Wenn du die Höhe eines Zylinders halbierst, wird das Volumen des Zylinders ebenfalls halbiert. Das Volumen \( V \) eines Zylinders wird durch die Formel \( V = \pi r^2 h \) berechnet, wobei \( r \) der Radius der Basis und \( h \) die Höhe des Zylinders ist. Wenn du die Höhe \( h \) durch 2 teilst, wird das neue Volumen \( V' \) zu: \[ V' = \pi r^2 \left(\frac{h}{2}\right) = \frac{1}{2} (\pi r^2 h) = \frac{1}{2} V \] Das bedeutet, das Volumen wird halbiert.

KI fragen

Verwandte Fragen

Wie hoch steht der Sand in einer 4 m x 2,5 m großen Sandkiste bei 2 Kubikmetern Sand?

Um die Höhe des Sands in der Sandkiste zu berechnen, nutzt du die Formel für das Volumen eines Quaders: **Volumen = Grundfläche × Höhe** Gegeben: - Grundfläche: 4 m &t... [mehr]

Wie verändert sich das Volumen eines Kegels, wenn die Höhe verdoppelt wird?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]

Wie berechnet man, wie viele Schachteln mit den Maßen l x b x h optimal in einen Packkarton mit den Maßen L x B x H in Zentimeter passen?

Um zu berechnen, wie viele kleinere Schachteln (mit den Maßen l₁ × b₁ × h₁) optimal in einen größeren Packkarton (mit den Maßen L × B × H) passen, nutzt... [mehr]

Wie berechnet man, wie viele Schachteln mit l x b x h cm in einen Karton mit l x b x h cm passen?

Um zu berechnen, wie viele kleinere Schachteln (mit den Maßen l₁ × b₁ × h₁) in einen größeren Packkarton (mit den Maßen L × B × H) passen, nutzt du folge... [mehr]

Wie kann ich aus Entfernung und Höhe den Winkel berechnen?

Um den Winkel zu berechnen, wenn du die Entfernung (Grundlinie) und die Höhe (Gegenkathete) hast, kannst du die folgende Formel aus der Trigonometrie verwenden: **tan(α) = Höhe / Entf... [mehr]

Wie ändert sich das Kegelvolumen bei doppeltem Radius und halber Höhe?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]

Wie verändert sich das Volumen eines Kegels, wenn Radius und Höhe verdoppelt werden?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]