Was sind die Formeln zur Berechnung von Flächen und Volumen von Quader, Würfel, Prisma, Pyramide, Zylinder und Kugel?

Antwort

Hier sind die Formeln zur Berechnung von Flächen und Volumen für die genannten geometrischen Körper: 1. **Quader:** - **Oberfläche (A):** \( A = 2 \cdot (ab + bc + ac) \) - **Volumen (V):** \( V = a \cdot b \cdot c \) - wobei \( a \), \( b \) und \( c \) die Kantenlängen des Quaders sind. 2. **Würfel:** - **Oberfläche (A):** \( A = 6 \cdot a^2 \) - **Volumen (V):** \( V = a^3 \) - wobei \( a \) die Kantenlänge des Würfels ist. 3. **Prisma:** - **Oberfläche (A):** \( A = 2 \cdot G + M \) - **Volumen (V):** \( V = G \cdot h \) - wobei \( G \) die Grundfläche und \( M \) die Mantelfläche des Prismas sind, und \( h \) die Höhe des Prismas ist. 4. **Pyramide:** - **Oberfläche (A):** \( A = G + M \) - **Volumen (V):** \( V = \frac{1}{3} \cdot G \cdot h \) - wobei \( G \) die Grundfläche, \( M \) die Mantelfläche und \( h \) die Höhe der Pyramide sind. 5. **Zylinder:** - **Oberfläche (A):** \( A = 2 \cdot \pi \cdot r \cdot (r + h) \) - **Volumen (V):** \( V = \pi \cdot r^2 \cdot h \) - wobei \( r \) der Radius der Grundfläche und \( h \) die Höhe des Zylinders sind. 6. **Kugel:** - **Oberfläche (A):** \( A = 4 \cdot \pi \cdot r^2 \) - **Volumen (V):** \( V = \frac{4}{3} \cdot \pi \cdot r^3 \) - wobei \( r \) der Radius der Kugel ist. Diese Formeln helfen dir, die Flächen und Volumen der genannten geometrischen Körper zu berechnen.

KI fragen

Verwandte Fragen

Brauche ich für die Prozentrechnung nur das Prozentdreieck mit P, p und G oder noch weitere Hilfsmittel?

Das Prozentdreieck mit P (Prozentwert), p (Prozentsatz) und G (Grundwert) ist eine sehr hilfreiche Merkhilfe für die Prozentrechnung. Damit kannst du die drei wichtigsten Formeln ableiten: - **P... [mehr]

Wie berechnet man, wie viele Schachteln mit den Maßen l x b x h optimal in einen Packkarton mit den Maßen L x B x H in Zentimeter passen?

Um zu berechnen, wie viele kleinere Schachteln (mit den Maßen l₁ × b₁ × h₁) optimal in einen größeren Packkarton (mit den Maßen L × B × H) passen, nutzt... [mehr]

Wie berechnet man, wie viele Schachteln mit l x b x h cm in einen Karton mit l x b x h cm passen?

Um zu berechnen, wie viele kleinere Schachteln (mit den Maßen l₁ × b₁ × h₁) in einen größeren Packkarton (mit den Maßen L × B × H) passen, nutzt du folge... [mehr]

Wie hoch steht der Sand in einer 4 m x 2,5 m großen Sandkiste bei 2 Kubikmetern Sand?

Um die Höhe des Sands in der Sandkiste zu berechnen, nutzt du die Formel für das Volumen eines Quaders: **Volumen = Grundfläche × Höhe** Gegeben: - Grundfläche: 4 m &t... [mehr]

Wie ändert sich das Kegelvolumen bei doppeltem Radius und halber Höhe?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Angenommen, der ursprüngliche Radius ist \( r \) und die ursprüngliche Höhe ist \( h \)... [mehr]

Wie verändert sich das Volumen eines Kegels, wenn Radius und Höhe verdoppelt werden?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Wenn sowohl der Radius \( r \) als auch die Höhe \( h \) verdoppelt werden, setzt man \( r'... [mehr]

Wie verändert sich das Volumen eines Kegels, wenn die Höhe verdoppelt wird?

Das Volumen \( V \) eines Kegels berechnet sich mit der Formel: \[ V = \frac{1}{3} \pi r^2 h \] Dabei ist \( r \) der Radius der Grundfläche und \( h \) die Höhe des Kegels. Wenn die H&ou... [mehr]