Beweis des Satzes von Vieta

Antwort

Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wurzeln \( x_1 \) und \( x_2 \) gilt: 1. Die Summe der Wurzeln: \( x_1 + x_2 = -\frac{b}{a} \) 2. Das Produkt der Wurzeln: \( x_1 \cdot x_2 = \frac{c}{a} \) Der Beweis erfolgt durch Anwendung der Mitternachtsformel zur Bestimmung der Wurzeln eines quadratischen Polynoms. Wenn man die Wurzeln \( x_1 \) und \( x_2 \) aus der Formel \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) ableitet, kann man die oben genannten Beziehungen ableiten. Für höhere Grade von Polynomen gibt es ähnliche Beziehungen, die die Summe und das Produkt der Wurzeln in Bezug auf die Koeffizienten des Polynoms darstellen.

Kategorie: Mathematik Tags: Vieta Satz Beweis
Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Satz von Vieta: Verwendung, Voraussetzungen, Beweis, Herleitung und Beispiel.

Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Er ist besonders nützlich in der Algebra, um Informationen über dieur... [mehr]

Einfacher Beweis des Satzes von Vieta.

Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wur... [mehr]

Einfache Erklärung des Satzes von Vieta und dessen Verwendung.

Der Satz von Vieta beschreibt eine Beziehung zwischen den Koeffizienten eines Polynoms und den Wurzeln (Lösungen) dieses Polynoms. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0... [mehr]

Was ist der Satz von Vieta?

Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und seinen Wurzeln. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wurzeln \( x_1 \... [mehr]