Ein Beispiel für coextensive Mengen sind die folgenden beiden Mengen: - Menge A: {x | x ist ein natürlicher Zahl und x ist eine Primzahl kleiner als 10} - Menge B: {2, 3, 5, 7} Beide Menge... [mehr]
Der Fixpunktsatz, insbesondere der Banachschen Fixpunktsatz, besagt, dass eine kontraktive Abbildung auf einem kompakten, vollständigen Raum einen eindeutigen Fixpunkt hat. Ein einfaches Beispiel ist die Funktion \( f(x) = \frac{x}{2} \) auf dem Intervall \([0, 1]\). 1. **Abbildung**: \( f: [0, 1] \to [0, 1] \) definiert durch \( f(x) = \frac{x}{2} \). 2. **Fixpunkt**: Ein Fixpunkt \( x^* \) erfüllt \( f(x^*) = x^* \). Hier setzen wir \( x^* = \frac{x^*}{2} \), was nur die Lösung \( x^* = 0 \) ergibt. 3. **Kontraktivität**: Für \( x, y \in [0, 1] \) gilt \( |f(x) - f(y)| = \left| \frac{x}{2} - \frac{y}{2} \right| = \frac{1}{2} |x - y| \). Da \( \frac{1}{2} < 1 \), ist \( f \) kontraktiv. Somit hat die Funktion \( f(x) = \frac{x}{2} \) einen eindeutigen Fixpunkt bei \( x^* = 0 \).
Ein Beispiel für coextensive Mengen sind die folgenden beiden Mengen: - Menge A: {x | x ist ein natürlicher Zahl und x ist eine Primzahl kleiner als 10} - Menge B: {2, 3, 5, 7} Beide Menge... [mehr]