Um zu zeigen, dass \( \sup(A) \leq \inf(B) \) gilt, wenn \( a \leq b \) für alle \( a \in A \) und \( b \in B \), gehen wir wie folgt vor: 1. **Definitionen**: - Der Supremum \( \sup(A) \) is... [mehr]
Um zu zeigen, dass \( \sup(A) \leq \inf(B) \) gilt, wenn \( a \leq b \) für alle \( a \in A \) und \( b \in B \), gehen wir wie folgt vor: 1. **Definitionen**: - Der Supremum \( \sup(A) \) is... [mehr]