Um die maximale Höhe zu berechnen, die der Partner mit 56 kg erreicht, wenn der Artist mit 72 kg aus einer Höhe von 2,50 m springt, können wir das Prinzip der Energieerhaltung verwenden. 1. **Berechnung der potentiellen Energie des Artists beim Sprung:** Die potentielle Energie (PE) wird durch die Formel \( PE = m \cdot g \cdot h \) berechnet, wobei: - \( m \) die Masse des Artists (72 kg), - \( g \) die Erdbeschleunigung (ca. 9,81 m/s²), - \( h \) die Höhe (2,50 m). \( PE = 72 \, \text{kg} \cdot 9,81 \, \text{m/s}^2 \cdot 2,50 \, \text{m} = 1764,3 \, \text{J} \). 2. **Annahme der Energieübertragung:** Bei einem idealen System (ohne Energieverluste) wird die gesamte potentielle Energie des Artists in kinetische Energie (KE) des Partners umgewandelt, wenn er geschleudert wird. Die kinetische Energie wird durch die Formel \( KE = \frac{1}{2} m v^2 \) beschrieben. 3. **Berechnung der maximalen Höhe des Partners:** Die maximale Höhe, die der Partner erreicht, kann ebenfalls durch die potentielle Energie beschrieben werden: \( PE_{Partner} = m_{Partner} \cdot g \cdot h_{max} \). Setzen wir die beiden Energien gleich: \( 1764,3 \, \text{J} = 56 \, \text{kg} \cdot 9,81 \, \text{m/s}^2 \cdot h_{max} \). Um \( h_{max} \) zu finden, stellen wir die Gleichung um: \( h_{max} = \frac{1764,3 \, \text{J}}{56 \, \text{kg} \cdot 9,81 \, \text{m/s}^2} \). \( h_{max} = \frac{1764,3}{549,36} \approx 3,21 \, \text{m} \). Der Partner kann also höchstens etwa 3,21 m hoch geschleudert werden, vorausgesetzt, es gibt keine Energieverluste.